[Modeling] Re: Methodology-Modeling joint meeting

Massimo Cossentino cossentino@pa.icar.cnr.it
Tue, 24 Feb 2004 12:26:19 +0100


--=====================_4863437==_
Content-Type: text/plain; charset="us-ascii"; format=flowed

Dear Jim,

>Perhaps, this is only a confusion of terms.

I think so. If I correctly understand our discussion the Methodology TC 
concept of meta-model is different from the Modeling TC point of view.

During the first part of the Methodology TC activity, we discovered that 
creating an unique MAS meta-model is not necessary, instead the variety of 
different available models is a richness from which agent people could take 
a substantial profit. For this reason we still have several different MAS 
meta-models (the prefix FIPA is not necessary in our work since, as I said, 
we are not going to standardize nothing about that). We think that a 
designer who wants to use fragments from our repository should proceed in a 
way that could be like this:
1) establish the structure (MAS meta-model) of the system he wants to build 
in terms of agents, roles, communications, requirements, scenarios and 
whatever he could need. In so doing he could leave apart elements (for 
example beliefs that could be important in other contexts, this makes the 
difference in using a personalized process instead of an all-purpose one)
2) prepare a plan for his methodology construction
2) select fragments from the repository that could be helpful
3) modify fragments that need to be adjusted for his specific purpose, 
prepare new fragments if necessary
4) assemble the methodology
5) design!

In so doing we suppose he will use the FIPA modeling language to represent 
both his MAS meta-model (probably a class diagram) and all of his design 
artifacts.

Specifically, the designer will use the FIPA Modeling meta-model primitives 
to represent his (structural) MAS meta-model. It seems to me that this is 
coherent with the Agent Class Superstructure Metamodel document 
recently  posted by Jim (consider that when I talk about a MAS metamodel I 
think about something the PASSI MAS meta-model you can find in attachment)


Regards
Massimo




--=====================_4863437==_
Content-Type: image/gif; name="passi_mas_metamodel.gif";
 x-mac-type="47494666"; x-mac-creator="4A565752"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="passi_mas_metamodel.gif"

R0lGODlhrgLXAfcAAAAAAAQEBAgICAwMDBAQEBQUFBgYGBwcHCAgICQkJCgoKCwsLDAwMDQ0NDg4
ODw8PEBAQEREREhISExMTFBQUFVVVVlZWV1dXWFhYWVlZWlpaW1tbXFxcXV1dXl5eX19fYGBgYWF
hYmJiY2NjZWVlZmZmZ2dnaGhoaWlpaqqqq6urrKysra2trq6ur6+vsbGxsrKys7OztbW1tra2t7e
3uLi4ubm5u7u7vLy8vb29v///wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAArgLXAQAI/wB1CBxI
sKDBgwh1vHDBsKHDhxAjSpxIsaLFixhd3EjIsaPHjwIXZhxJsqTDHCBTqgSZw6TLlzBNolxJs6bN
mzhz6tzJs6dPkC8IQBhKtKjRo0iTKl3KtKnTpwo0/OwZ9KnVq1iTIggx9WcIBFnDih07dmvXs2jT
ql3Ltm1CFxDcyuVpAsPclHDv+vzwQa9Kvn4DcwQsuLDhw4j95k3MWEfdxgMXQwZJeLLAypblYs7M
ubPnwpI/z308ObRogpshpz49dTXr17Bjq8wbo3ZtHTNm4I6huyCOGAd/Ayc4nOPtnbzp2i0dd+Xx
lb9/uk7MV7htHTFwYI9hw+CM4gS/9/8WGL1jcpy2r3vMjrqv7Pfw4xuEGwOAffsxHjzQ8cB+ggQd
DEQBAFwVFIJ/CVCAHQDgDYQBcB0AkEB3Oc0gYU4POrYcZKaZ999/J6wUQgLSuZcZXwfeR2ICXCUg
IYgDueiCQf29GOCIB82gIH8J7IeTi/cx6BGL7cln5JGw0QdAB9fpx2NtGADQ24cGHXhCDCQAQEJ9
DepwIHBO7tSBiyHa9KWGlnXI0QMT2sDmSjZ0mdN0iKEIwJW3EdljbW/q4IKEGw7EJpRS4kgjiToA
qBOfCTzHEZED0YnkpJSCBkF9BQrkZJ8rCElCAicAMCNBZ+LAIpc6UPDfAza4mKB9Cp7/sCpwqiZI
AQZsYoDBf+MJlACuPqbaY4I6yEpsorsS62oMpHHYHEiqnmBDnALVGmKtqgaYaAc4zsCmovntuZKk
htkJnp4+jlktgIgSxCmDOBoLYH0vSsjVmMcOOyK+JLAZrKDt4pvACsL2qNupipJb6cIMr6Xkhwpu
yiK+3T2g4LEDHchtfytwGQMFtSVAQoQnePvADH8yuSuPHbNpQ4QktJppsaJmqduuDPXYKgk4PGCX
zhHGQDKazKnkrYQPELyrDZ+6OXAMK8tqA44UsNq0zzrgOq6Jltn5YYstshjlfjJbSEJBbIZAMY4Y
BKjqkzEAiMOIV1qc6APZEcumC6E2/9gnDhScYCrId+LQAcG/9ngZ1w037rhaSlIQQghnbwqAfhTo
9mcIH09oMgYH6pf0gsCdgCuBZzppKJdhqi4kpOvGsMKv/PmoX6jcvk0kl2c225ia5oXg8n+Tgxqm
hS5QoCCOsLcq+dJ/Ma7aBxpPPqOePWLt5dOK9/tAv5dbrBuOU3/Lo69chcl8gUS+iaq77brQQX+s
fohBd//dufjj/Pc/lZIzk1hBovQhAn3uTAPh0qekxaLU7cdQf8qP7R74uky16kP/qZ2mHhAqPAFn
d/ASku8YAzyEPEBbnYob3mrTs2BZDFTb25YOcOCCVjHJUR9RmGDMRRB0FQSDMvJev//aJRDmgUxd
fWpfulbEvvSR6H0AE4iFOmCyGZpOWT5DlA79x8UuHgSA7tpPn2K0oTF6SUgJhNfAshQC3LVQB63C
wAo2NcEzfjBTI6JQp04QKl1dLo4uwBoIY+DGESamhAcZELcyOKYVjMlNwQoVoqgGqqXp52P/yqH0
GsPDGLXoX38qk6kCZcYY/ipcWdMTV0LVRtpBqn1PRGMUF0SC2XFQZHG7WAhkpoMtevGXXYSLt87m
ILtgYEcCCeSodNCv8TQzPCezQdVCADpIzkBXycRcd7CZNbs8kwLETFWgbuWlBwhvP3PUHjhxE039
zMCQiEHkQXCVoN4AS2njLBAJdnT/T9xULXNb6wxfnimgs5EzY8jMWkKPWZB9lhOcD8DBHBW0Tmbq
R1sVXSdDvdUrhTrIZyFYnjZTdTbh4cCXwEzp4+QZn36tII4rgedhWMoZlN7Fpg3DqUp3Simavsdb
q+qoR2RqGJ92bZOM0enClMrTpsbHqF4kqqXgw1S2VHVSV3WqVlkD1S5KVTBd5SRSqTNWL2Z1q2jt
TFj999XArJWsAi1rF8+a1ro6y65Eu+t76HoWvsbHr3gNbGBUEKTCGvawiE2sYhfL2MY6FrEOsAxh
H0vZylq2sBvojAUuy9nOevayFhCsaOHzVv61VTHPig1gS6TV1Y72tZBLLVpPq5fS/x7GtT3BLWx0
C9ve+sS2jqPtXUJzUC/NrCf4Gp0OCEYQkGkyrq2Vq2+nO1W7CncuoWETcyc3lRPsKG7dSShuKCPd
wvCWNeelrnppAtzGXVcu2ZWVdri7AuUpaAbUDJx3d1TfwBUkoSTYUIh2hQH8UqADBSaBdzkokA7c
qsC9LO8OJcy/9K73wh9pb8Pe65bsxoCaxk2UdrgVt7ydDQMkCKR2KMDcIv73V2VKFXYG5qYPRzRu
XrJLCiMMXadaGMNARoiGGcbhtgjzNnjjzwq4ix3vcs5Hk5yc5EIaqBztc0Iyzo+mPlwgMVIoyT+2
SZh7HOQyw1e2Wy0yW+ACLG8BZ/8GAEofikkM5SJKeXKUS0jMBsKtLNuOy9Xiz5eBM2aaFPpEFDaz
onMy5IWp2WGpTfL2niwQ0Gk5UXY2XRFjXKUNYSBE+7k03pisIBTPmNCJ1suhj7roVqel0ZV6dGyb
Wxxz8kd5Dv6Yr+ycNYuJl4ipZJO2LKbrVAFaxqmymI9WnRJmT8/V0P4fmrUq61dPmy1C9Yi0ds3j
mqa6cc6O9mthTalqo4XcaZljSLUVbo+0G67ijjejr91Uc58F3WmJ03jePZhv59Tf8g64n+jNU3t3
Bd9u4XdCFF4ugAs83gg3ksGlTVWHt4Xh5rX4w6HtggXE5OMgD3lEPHCBNHlc5Cj/xwgGNL6WD2Ag
5TCP+URWvvGae4QFAziAznfO8577/OdAD7rQh070ohvdABGwDM6NzvSmOx3oBagyZDBQgKdb/epY
x3rUbc51IRN8pxP/ScStynK1YHzCXU87QcYen7D/9utkZrWPy672C7MdPm7vyd3TcvaC9N0vf697
//Yum7zzhPB9pTtaAn9TxQt+uoiHjeF3EvnWOL4rjJ9L5h/fsMqzZvI68fxeLm/56HKe66IXDejn
XfG473Tzp69U6j+zepzMfieZh/3FSR97wd6+M7W/ye/nxPvRm773Dx9+ZoJvE+XfJPfFV230kZ9W
50+G+TWxfk2gf3zqy1v7jcE+/3vh7m3Xq1T33n8q+YEp/pWAP6Dln3v6v7/+X7Z/NvWfDPflP39x
vz8x94cX+fds8ddU6Nd/seECDCBzLqECDGgSHiB18bSADLgCKfCANFdTL/eAGOGAHHgRGYiArmYD
EkAWJogUBMAAJ7iCRIEClkGCLJgUBBAAMZgUckJCNUgWAJCDY7FMIviDNwEBPth1NlAABqACjwcA
QLiE8SGEgscBFjABDJCETFiFseGEakcDClACGGABLlh3SmiFYigaWJh2FKACdWEDCDATaReGY/iG
mVGGXBcDU/gYHDACYAiHejgZcmhzZ4gmasiGXOeGe1iIhtGHG0eHAkEad6h2hP9oiJCoF4j4cFhI
GjbAABQyiJG4iZI4hA+nAsjULCPAAW3IiaboFpMYcAxQHM2SAwiQiTX3iKc4i1ORivEGigThO6PY
dbJIi764E7YobipAA7kYKDkQTrH4i8rYE8H4cAFoV724jNKoEs0ocBwwfb0VjdOojNriEdXoe3uG
EJyWEBhgAvHWYh2hjdtIi4bijZ7YWwgmPLAoRcLTjeRojtHWLyChjutoircCbAnxjXiFKJpmEP3y
jgOEj65WNZmUEPzYj5uoHQCJEAJZV5d2aQXBJMc1TwrZanyyjxC5jRN5EBWZVhfZkCpRjuKGkekY
ktM4kgZRkmh1kjihktHGkhz/8ZAuCYkwWRAyuVVukkwSmBI2CW046ZA7uYw9SRA/uVXglB8zwjPM
pB1E2ZEeiZIHoZNJuYc3GJMICVsBxlxSKZVVKW44gIw5uZVqqQNN2WpFmYdrmZRtuWhv6YhxKZdf
uXF1WYp36ZJzqWh7yYt96Zd5+XCBqYmDCZF/aWaHaXNamZicuJhl1pjJCJnrKJlBRpkb95iWCYmY
CWSa+XCc2ZmF+JkYFpoCN5qkqYemeWGoGXCquZrUN48BWZgC95ryFpuyGXumAhKtuV64GW+6uZuP
N0dLORC/qV7BKW7DSZx1FwJw5pu2GXDLGW3N6Zx1d5wCkZzUVZ3Qdp3YmXba/8mW0ylv3ulq4Bme
XDee3Dld59lq6ameNcee5RlYJYMQM4CWCPGer4WOaSmfSyhetYlhsyMn+6Q9HMGfoqWPHxGfANp7
7dk/B3qDDkaVCWqVisaQIPmgkRih/KMdkmYQK5AbHqGggfWRDcqhHVqfeBWiNmGiJ4qVBuGgKvp4
Hto/LloTMIpXR4kQNFqjdXej/JOjNLGjdtWjWQmkpcmidiVpOyKgHWGkFimjBfGjStp1Qvo44zEc
XbmfGKpoZ7mhV/qGWSpaUnphVjqmNVemgnWm65WmakqJTAptbqpecBqnAcemgVWn1HWneBpveopX
fDpdfvqn0RaodjWovlWohv/qaohaV4qajY3KhI+aVpEKW4w6qYpWqWh1qa+VqZoaGzHwgSXBACNA
qiQhiP3jqaMFqqHKGjYgADx4ggngALNKFmbRRawqWq76qqJBAwgwWgfIE7sqWL3qq54BrMKKjZNR
rIF1rMjKGcoqWsO6E86KV9AarZYxrXJxHqdRrTpxrdCorU3FrW1hIeNJjl1aerr6pYhJriplrmwx
JvpjJrJEdoEhEqjqEBLQAfv6EDLwGjLAgaLygAELGaP6rzDHGgmrsCinqj8hr2vxK2EiLGwSK/+x
I4mjLBKyrsanF1Vxq0yxALYqskshAK+BACV7qwlgsg4QrI0RA0JhsjSLAHj/+BkyS7M0qwCkiBYS
mxah4gI2k0o5Uz88I0isEjRDk3DM6nVelK04gQDEKBs/W12yoXv/lxKrV7VnoSqyQzutw0FLElJM
RDoItHuo9bQpO7WxwbVuNYBiJRpZCxJbC7NscUEYpEG100HXMUhni6+1BbfywZlQCi0IMTfs8RFS
+x5uyxNLhn+t9xlz+xF16xZ5JBB71EdjA0iCxBVc4kZMm7b3hmfe6hshYKFsoZXSlK4Esbr7aTH6
iRCLexN4hmeoGxynyxONqxOfspEcQW6Jix3aURu0qRNY+yw4ZB4eSxPBO1RDqbt2uxbFJU7ldE7L
pR/LsU4cZU2hG7hocSAF/2SPabS8PaGVn8a6DiIr+MlQIDG7NpE/L7KuUJQTu4sebeO7byG4egYA
yKQnLwJDPHG8AkEvQdUREYJl1npHWvu8O1G/aeFSMKV/TftF+vsRCDRGx/E+yTsVnIm+PcQRxSu7
bHsTZlQbW8odpIMd2aYSDowTTAYSsPYtFIIujJJbExx6zVEfTDI7hSsoVCoiQoLCdMvAOtHCZwFU
BiN3w1XBHlEqihM3q5LC3/LDOtHBN+HBIqwTY+QvWpIow9IxDLIr5JsQRmwm+Ou0PGE2ipIon9Rg
WIwQArwgXbYf+BIgKvQq/KsD+KKxaXMruZIsulEr9dOxDYQon1IsGVuMaf9RxsC0ahEHvqsyI3Yz
SgqUADhgKrFbvirxxpi2E+5Lwu1CArpxSQRiAyNaHwMyjjXByDTxwhnGxANEIm/Dxl5MTZdjw3Kb
w/wbUksiKy4QN1cCAC9nMvgFKvlxMXjTMxMCMzLzMSEzMvrDIjvDH/cjMj2zIZVLrTdcEI98J1mi
LZBCyh/Dv6rSwzthxe/LE59sE2MkPFEsyL98H3NqEKwsImdMwT2RIB8WzWGDvR/rGYtRH9nDFbtS
PA+CRnRURGWrQWdCJKbTH5NTQcn2J3wztrOcV11Rz3O1zWsHyxxxJhGCOMuhzwyiLsKbFuhcE4ii
a8W2EutcE31SH6B2Yzb/ICt4oyVVU8TRexau7BFDJkn5o0t3g3kcLXy6PDNibMLvk9B6vNCuc0cL
JDMNzRUuQLE040EDkc2C5cgenRAXbMkHckwJEM+88StR4p8/AbU38dI00ScW0jY98iegc0oMAmeZ
nBIafW5dLSx8NiE+xK4AfdQE0SkKZswIvR+sJCs/M8d2xMYjsgJs5Eav1MWci81EnBM1EACftdmc
3dmMlVneO7pUiV8zsmTQOUO56wLWoxZqbRNsvRIkkCkn0Eaq7SeTczZzox2xTb87PVNd3TOZ4i3e
ZVCXvX1F3XzNMUwGoh9cwVGVthzeg1HEhE3fFDPTVE3uVFEhNRDpFCha/x1YXK22rPHan5HX97bX
gHfc2YfeevHdeBXeXdTaNUHeydrbRcXejZfLeFfcN2GuwpNA5nwTJ/AtBeKfPZ1xostF8k0T9N0Z
5n1w+K156j1++73I0bsvA0zFNNEq3dEz1+Ibt4vgoa3ga8u49m210qff7/HdavMAM6JlOlI1wAE6
B4ZJuhHj4ptQcEaVLjADslJqDkYCopxf2rJfHXDXRJ3g/rPgLj3Cr/HgFLdXE+5+ES4XLB4CgYQd
YjQjA54ooOZNFwMh9nhcYwJOFKKxQ845jWIqoxpRvNS9Syzep9Hg0nriYFXlcK5WeN4WdSscc3Mv
TOIjKDM/neziWh43k/9j0glR07tCMBprZ5fGJB1QJn2W53LBAp6d6Zp+WCjLGgaw6aCuWAYAGZge
6qZuWPxtGKV+6qy+gxYuREz2PfuhPG20H4iSZPmB6Hj2Fss0R8gWZZfGOZ/Ga5b+AhDwApAm54hx
TAd7EHSeGVC+EjfAAF+Iz1Ku4oWX6qt84QVS1bYuEF1+68CRH0HpJ88bSBQSYKkikZDuI5xTkLYG
5zdgAQQAAARgARuh18qOGCqgABjg5ALx7Ntq54tsAQyAhPOx54BLEBDr2xXus9zOZxRlMeqCKM6l
awN+SR9MKtnDTycD7DvCOXpsMS+nGe7BAgWg2fYRAAXAAvouIBty4Dv/MeDEg7n/NcY0weQHYQII
wAHz6L7/PcABbhPhQjvLZSD3PBDRXhMf04fEFfNJbxPJxVz+6VzuxjU34AECcD+/o/Br4d46EeII
EcK/OypWv3s2AAH1blhCQfa2F2kDQ+w+weEzxGDitcI8ofMIMQI9n+86APRrjKQ5oVzYJF6X/BFL
j9wSUBzZFfch9hPeNcBYdvfkNRAooABcYQIKcLPx5PVqAfaZ4SbUpOF7MQFrn1gEUAJRrinyFWL9
xU/rZuPLpTzjqOOWnEzX9CsGhmC5QeQN9mB47xF6jxA5wPcfsBFAPz8vvh8xnmSfpjzSxGAKJV4Q
FiPDIVE/njVBfmIh//VdtG4XiX8TLMAAFECM8XX79GVflRb7VaMb/VX7BKHu4J5KBbZuCbZglA78
PCYDEGABmXgDAMGBwQsdBQ0eRJhQ4UKGCF1AaBhR4kSKDU1gqJjRIA0EGj1+jBgjBkiSOh4AQJlS
5cqRJRM+PPggRgiMIULoSIBDR4ebCU6YxEiCgosHOimsOHjzYIcEFEjYKEhBR4wEK2zIpBoDR4KZ
GFcAaPkRgEuyFG98QDDiAA2DNolOfWDShY4TcR9g7FCUqg6nOlbENUhCp8ETCR6EmBG1YAISM2zi
/Inhpky+cTmWxawCAQYVEA3KpKnjcc6dPX/e1SGUqFGkbRFSSIDhp/9iqlZB600g2itYHR86eFAw
N2EMBxigYiYJE/lyiheZI7z8XPr0ih8sHBCwUqWAAtq9fwePEsEMkSZHPljxeOoJCj0LPpgb43D7
EBQwNrRxAkNVvnDfiwSsA/mOowyk8A5EMEEFvYNBJBwe60BAwGZwIS/zROtgMZxsCiGB4xiqMIEM
pcKpoNEKciEEF+57K7qPRoAgRhlnpLFGG2VUAIADyDvvvPSUioE99+SCqz6b7ItoBqE87E++/9Sz
i8CRNCBAKYZMKICBG7fkssstGciNOjELco46F3XAYTAdbAhLo8QaapOkGN7MiM6MPvgghw0I8I6A
DXKQ7iEMHnhgBsr/ZhBxMgxI4KnEC+Uz0iYSQBTOr7ikctK8TEMY8D+SxhoTs4ckMAAEQkmAkoRL
26vrQvVyS4DDENRECIdJC9qqP0dPnCoE/Qpy8kyNIBjBBWOPRTZZZZd1YQQGFmBg0EIPTRQoRoek
DFL6QrhVoacMahRTwEBTSqoHpNTBgwcGYkgGCCpYgVl556VX3hEcCFXMMqc7Uz2qZvOowIXCJKlD
QgU+aAU7P4tzIjwLekGB7FASQAGCplPOU9FizVQyR7N94FfRAH7p3IJIwCiuTLECjNNFp+Lq03xd
ioECCOZCgC0TlXLBMEdbpezVC3EgcWDhnKRApzB5nekqnQbVQdiM/25GLgYJbs74wo05BczjMEEW
2VeGQitINpP8M089qV7OqrcPiDMOoRuAq3TmhbK2G7l9pev3Jvnq1gjhhAj+qK7BViC8rYa1vvOD
gz7gkwDHxcyagrAOM4kCCjqQKkzLp1r7Ac0RStxg0d+znETLazZxJApEB8zAvD2iwQIGVDAo57as
5LyyzXP7XGj5CCX5c4P+OnikQRHd2dGZ6BI9wqg7AolqsmiggAEWUPQsqssn07x3z0difdDRD0p8
vwdERJ11vmYqNyrYC3pYBxMUGMEgFBSwcnaF8PafS/b2nL61DUOvu4/mMDeuuZBAVa573U+u8rrc
yEdzFYRdm9Tznv+6UeAEIeDcXRBVKAvC50IKVArsuGKys9XPIDKogAxCBcCZfagiJzhO4jQCqgBG
xAYaQAAKEKI75NDKhxqx1cluIrWKWI8kNsAAAnBnEBrma2ETwaGG3GaQGwgEBRCwgA17eJAqjlEj
A2ROv/ZDsNDk6mUmMdQMDIURClwlBh7DyQzYlhvKFIZINiBcmtBnQw5hJFecehQf73irQr0MkDFo
1K9cOLsymnEhf6lPhmRmyYR0EQHdOggROTmRB0TIZEykiBM9YgMOIMAEL+neKCOCyc3Rb3IGiYEF
ADfKSsrSIvfhFwJSpKIOQfI+ajPJcSTlQFXhwC7DIxRjCnSu2MH/6mAAuKJBEmAnniCTU1dhmExY
aJPYyQScQ9liAHvpy4KwKZsZ4aEsR5AWQClElOxkSHkKgsqJqPJO+KunQ2KJT4W40yCTJCgZB5rQ
X4qJI8Mc5nsmhcxCFaQDT9HcVUBonpCJRCvTdFSJuOLRhvRFmxHtDyIJNi35vOmiFT3hW9Lpv3Uy
tCTx5OUNGnJPmy6EnxLxp1lGoNO7LbSnCUGoTWtqUzQup2/A2iYyO4ARQELFZyGoKGgMWajQ7KUv
++HLT/ZiEEEaBFGzwYBUvDmpkFnKPFNdk4dCcwLe1EUpSZ3ZUo+6w70OUWd9TchPIxLUsug1oXhN
qGEJ2lTknMmB/21Z1K3uw7mjmChDMyARBhKTl8ruxD73SSt75EcBOz32IJgllFJMixGi4FBzpNWB
Zj3bWSMVjUkzpeQC6rVb3vbWt789Fk73egAUANe4x60XCg5AEsKSRbH4RCxBn8tOxmJGsGJKml+K
1sMOzCVXOnBB0aI7JhcQ4ADnRW961bte9rbXve+Fb3zjSwDAGsQABpBvfvW7X/jel7m7LIsKFjRg
AhdYOxYArAsCYGAGN/hAE3Ao9QJYl9e9026GimBst3nQW1LSqPWVHYh5CuLrMqS5LpmuL8fLzhTL
srplKTGIp7Ni6rRYxgcR7lFHXN8YK+TEJbExJ2ksyyBb8sXXk//wjfM25EB9WMkVyXFPdwzYHifk
x8lxcl+ZzMkim/HILqlBABowZjKX2cxnRnOa1bxmNrfZzW8uswE20MMuyzjKNp1yX6uMkCuDpM49
3LIl/xzAL5eEBgQYQaIVvWhGN9rRj4Z0pCU9aUpXetES8ACds/xkidyZoXne654P0uePDNp/gTaj
qWdXaJKImtMlQTVyVL1XTycU1Ed1dUFI7ZFZ2y3Wmn41q0GS61d/5NeF3XSxF1Jrgt66p8TetUZ6
PbNj0zTZPRX2R4it7MYBm9vwlLGzbQptADv32jattoeDDUy+Jfnb0kk3kM/9bh0wG5/iZii5m/zq
eNtt2vnKNu3/3E3v5fTbz/N+t73Zie+E6vs5/w6VwfMF8TEFXCPbJnhDJM5rhH9b4b5kOEEdzhyK
i2nj5O04Pi2eEYxnfCEnz0jJ8flxWYYcnyNfjsxn3OGe6lw6K69Iy12OVJ77O+XKpvkobc5OnMv6
6CouOkN9/hygU0ToQ39c1Cf+9FcnnZNL92XTRcX1UcK8xmTnZNUncnWs29LbbU+I1y0JdlmKHdn8
1rp00W5kdhNw4HAHidkp4gIE4Mnwh0d84hW/eMZzwAOMhzyeNhD5yMvdjAjgAOU1v3nOc76V/w0U
A5A7etIjCwN5x6cLRF961h/XA31P498B7xHBT+Qsncd95Bkw/4HcG95PvcdT/kBsAuAX3/iLf2X1
yu0SG1zNS8+HfvSlv3x8Nl/618d+9iEgRDPJfvbd/r5BMJD8j9A9/N+O9vnVD3e2t732PR0/Scy/
/lenn/73p3f7sf5+m8YfJPPHvxuzvwAkQE6zgYlxsARUwAVUEOE7P/8rv78qwLYbwAm0wPXjP23z
vgtsCAj0CADkwJ6qwBAkwf1DvQDSP/XzQI0AwRIkqBF0wRj8tgwUOBmUiBXMiBa0wVGCwR30QRmj
wYvbwB3EwYrQwR8cox5EwiXsqSBkuSG0wSKkiCNkwtlRwirEQqi7OSiUQSmcCCrMwny5wjAkQ0A7
Qf9JwQckv/8PlMAyFEHqc8M4ZCcnDDoujEEvlAgwlMPnGMM99EN4O8PZScPww8OI0MM/xIw+RMRF
JAs6tDo7dMFC3Kk2ZEROUsRKxESNcMS1g8QSlESGOMRM/IhLFMVS1LhAzJtB/L5PXIhQNMUmgsNX
lEWS2ESJUMXZw0ExAkVKZIhsWhgLkwg6wQGR0EU4UQhgBKxiJKt+isVZdEbwC7tOJMEV/K485EWF
yJTXGIkMcR+E6J+F0KO2MIyDiQil0KFuzAhNGqVqRIgZWIHuAqpmfMZ5jIhajIhbBDwP/AsdasVr
HI7YUYjtSgiB9JZKwSrx+8bXeA6C7KF9vJtBAaWFIEV6LEX/e2wIfOwpYDSihfBAxOBHe/JHhHAS
EEKg99kPDGAdztqmwpAKCjMZctyug9wZDEMNEPKJpiiREiIPc1GgzRKdDRMd2NCj2Bglj1wIooHH
wZJHimTKrNtC+qsLQjnGd4xFHPzIhMC3kTQkRWqSoiCRx5AKcEqNzmmJmIwVm0iAFGmN3CAbEuGj
uagQJ4kZ9iCa5omZcGGnq4TFpuRLirBIhsDIhCKNDaIiiLzBNdQia2wIiBrJ+KEMcVkTmoiV/hAZ
kUIRUOoQDnmTD4IN0Ygfy8Qlu9CmyNyPIXkehhwjvUylpexLivxLn5JGbsuUbCSrzalKxAwpQwxJ
xowLinId/7gApBNwjJuQivAazTDpADuRSfFDyUP6TFjBJScBjKsIzuF0HuLMS7KYyNZExNdUiMDE
p9kESI+wyikMyYNoTMWgDL0Qp6jIEHO6S4z4Gm8cT/TwC7ZMoZEAnp8QCrlEigjJlFoKk+cpCl8i
mJZYnIbYTu70Q+8MrNhUNvEsCRxETaw8T7MKCsmKrcRIq3BMKw+qiUIJLyTpDyhCCJRxCM2hCSW5
FazCrKgYnXCMDRL90F8hESWJrQr1n6JRnWFhTQZ1xiFLD4bQ0RqcCHVUNkMBliKNCFYEydlTTcBb
UCCNQxojgckMyKZAxjqUCByAmnejDLNBUI1wUguFUgKcUv8qLcMVu6NGUYgTgCvrgsJSGs9iQy1N
6tGMKFO/UlPmSNM+zcIhI8yDgApl1MCJoM0L3NNQulBA3UtHbU1BTchgQtQ6ncBFzZ1GhdR43NS+
lNSZKbFEtUBMLQhX5M4/7dQf/NR8CVVLLUBS1QFTbU1UTdUdXNXHGFQ5rVRPxE0j1NRa9bEfBdY/
dFDosMMtpT9YldW+pNVhdcFiPQjwHDpl/VVnNYhmtdYQhNaNgFBF7VXzzNapEdZwXVNUtBtpdTlq
JdfVXNdX3NZ96tZR/dYvrNZsxdZ2JcB3nR4yVFd8VdBx9Vcm1Fd0zbh+DdhgPVhMHNh4vdR5VcyE
tTKAhVj/WzVXUGXYV3VY3ZxYPpPYjY3BheXXjJ1Ej73WjiVZEgTZMDRYfMIA7XPZl4XZmIU+AmgA
mY0+DThZ96tYVr1YAlxZdgKA1hPaoSVa3mqBop0XFOjZnEW3nQ0VgiW4n/Uly+NLqGVaanPaMbHa
d5NaWaLaptzaqx2TlM3Crh2lr2XKsBVb6iBbLDRbTkJbklgjwRkTLI0IF0CKDsm3pV3bOczaCAtZ
+atXu4nbj1gfEiiMKF0OFQlGALiJFNnbvqW3tq3Ct7WkwtWIGACA2XgeS8GcsHodSCql1JCMUhoe
15mUOBIKVYGtvkAt2EIe0sIAAGAMoSgI5CmX+vhcQeRb/8ktu7/tvsD9v8GdGczNiBDgjYQBAMlg
H8NAnFjpALBA3osCgJDxmcnU3JlYXpbcEJMIGULZCgxAHMkAgKHQ269g3gxJAJ+gAGxCw971XUui
XCa0XDMy3opA3jiRyp2AlcmoIOn938mIC+wF4PcYYE4JWjTBlRQxDM29Cb3dX6bACW5M3lSE3/gd
o/ldwvodo/sdvM1FkaTZX72dzPWZigJ2YO/t3uzVWxXmGN7QCUByCkJJYQhumf494QQFXAwuNg1G
Qg7uIQ+miPWJFxPuEBeYoO41YRYOYBfGiNmdia85YJzAAC/lCgBYga0oFADogAdhy7RMYgLW4eDl
Ybx7Sv+VFdldZCghngjMWt8CmdvEmMzOzAq9pQrilAqmEBGuaOHRmczE9QmTMIzXwYmzDJM4XuGY
4d28cYHjc+RHhuRI/gAHpD8f/kEgDiA2rghD9UF0xTxJBuVQFmXFEyb8s2QfxGT/0eRS9GTilcF7
hS7gpVQ0Ftw1ztZW/kNY9tszLts07kdbtlZc9kNd1kKmu2AV9OUnTahVFkVhzpcHmZWdMdkXnGZO
O2UiTGYzXeZbPuaRnRnNBWFwntT6q+Ynu+YozGY+XeZRZud2dmdR5gADyJtlxSXarYn1BZKwYJOw
4BGD2Gf0tAE5KgjyCCBilqVz7sJ0ZtQ1PpiGduiHhuj/iJboiaboirboi8bojNZojHaAAphnV/4I
zQWruyjhNwYvw1hfG0De9YkLxFmf3ECU9fUZ9dmwvDHo3+Vlt1XoTAVmZ3XmUNFcuvqXWLnSNGGM
DrEKF3CmkSKfSRFq2DDqLUaK87GbmxYyWW434Y3AngavbkmiPv3pMcne2PCQWGnfCyKtk2iK/EgA
e9YBNz6J4TFgEqheCrLCclYyhL7DnS5VkB6TeELeo3HVvgxrMcle2OhfCZ4KHJAjJeEYNoleuXYB
sOhMnICPBI4BTpYOq5ZfrPY7rWZDrtZdYJkQfUqMOXlrfs5sUyxs6sheupZPj8SA2U0PLo5e9oiV
/bAB/9jAKrCYbJm2i1JiH5vG6xvT60jk61j1azEBbBDixriYqkzKHKzCgKlam9Id4z1s7el4kDRh
XMaFqIL4oBBoDVRBjMgMAZVOjBQhirhQabG5a1P27NgDbRZcbupobrlwkluRzrx1S+Zxq2buZjUu
tg7pgMJA0oIubiCcb6ca8FVMbnoWC1V5APMGL/iIi/Aix6AxR82VacV1w+2WMWmBPf/hbDM6bl6t
5WUeRq1Qj7wY4Ph4Js9cjGzMbjkU8Sw88Qxu8MZ6cFyM8Puejvw2YJxYgTviSqGp8DZl5R/X5j3c
cTPM6coNcq42FrOalGFS6dTQiSsXDcsiGUzMcSyM8v8ASvFprPJtDmYnRwjiQto3h3Oi1S35nnL6
TXP/QQFOZuZMRNf74q8/B/RAF/RBb68B2J77O/MQTGXmUFoOIKq44+aPzuUFB7FE58BFZ44cmKcP
eHSD2HMxdzcZUAAH0OzhnXQ6N+b6zkEhL4mzACgcOwgKPxhklK3nMC3FIO0b95aIRIhaJwkK53V/
PsYSv0cJy4EO4BMAIAAReA6emltdZ44Z2MiDQGziiQjYCPOPWEtmRPVoVHVfHSVWciVPTwqs0KeG
oNuyIMwBDeSPyNWYgPaFuAuRsJCAxMbBBkzqeQHs2A4FkCHkuKdaOmn/QSSG+NyeAUYQlwgS0fUy
P7X/HtdVWjZ1WYIiKaq3ckeIFWiNaEaVuUCPDbJwunjvwCAmJWoNaHZTDZGPljiBFOkWVEGKW/Hy
8Tb5geaWQ+GWeEHvhekf0RI/wXCBD4p5xth5tIH53YkBEvByd+SIG9iT75CcgHIJUQJw8TYRzZkL
2cioDNP6OsqwhFiB1xpoFR0hOrl1k7CSMD2fRRGd8tUu182krt/ttgr70eFe2R1or9Cc2XD42bF0
b5W/4opz4EKB9QFscx+JqpKeJcdwmegdp4AknryjPEbJzlxyDzIJEkCc/uEK/lgMlKzwzJcP1cgc
uugm0fcgQFoBus5s9CiM9K4KorCT7WoPMpIJxkAc//IolKvQ+G2SThIY/cxvbyWNLRc4NAJYMPAQ
AAOId28WjTrtKg9BjbwYRj7CC9xQCNJolJiRjYJHkbox3RhAnN2elL8ACv288DRBj9q4iuuvfpzQ
CbwsEZM58NXgC6To+yWDeBhj87aDVQ8ACAgCBxIsaPAgwoQKGwwAoOOhjhAJHlCk8PDERB0xHjzE
geNBjIccQ+o4wRGkDhscEzy0kWBjjBgmNz4kEQKijgQJOnB8yLJkCJopH5zooOMBSwwxQgQFKfMB
04cUlpJ4iIGp0hgYjOLE+WAFTpg9leqwGLWkUpA9VcawWPLkjJw6aACoa/cu3rx69+adEXNGiJ5e
4//q6EACZQiuLBEr7gpRJoWmOIM69jrxAQWwCZhKZOuzcFUdLqb2ZPxZ44nIZT8blhsi8msMOiC4
qGz7Nu7cunfzvv3hQ+/gwrvSQDD8OPLkyodjMLH8OXSINDAwUAFA4ubAjnHs1Cj4KEmWgSlgOEmS
wgzBLy9jFroU58uyjTWGIMFV7tfXLjgyjcEe9kNBUVBbREyxJ5ttHdwEEQmkBRiSRZk9JJZ9ECVQ
oXc62FfUXAh8QABfARRQQnQI7PdAWjh1sJ8NAQYW0lmLwbjgT12haJ9kEFF2G1RdZcfUR+HpgMEJ
E6ol0oyf3ajganKp5IJsr3FWFW3RWXmlbr9h+Vz/cVt6+SV0zYE5pmM2cICAczo4pON3Vr2Y3kMr
vPhZAjiIZp5UOdnpQgJwpkSCnzbB11ICtf20lFD7laVUalGG4KcNJGA41aT1ceUCgZXxaadILghF
mVlcJSbWQ/v5qd1R6HWYkgMN4UUABTdYiQANXhWpUQI2UBDaA+klid+vNT42VggqBaggWDwuCBFK
OFiEklwkIIgBCUIhRqNQV5Vl508UDIhWgEVWSSa5yWlZbm9dorsuu2Kyu+UNHiAwAk5rBsjeA5Ja
pCgGV/UK7WIKUiBjniZ1QAFH/QZWpMKqWQjRCnUeehN5gYFFAksu1RaVwkQd1QFPIaFYXpEPKNgr
/05uQYTRyUZ9GtJOH4GcK00VfzUkBTwhiPBD6upQAgEB1CUAASxgSStOMyCMFFgqIWzUVAV+FnWM
lWGWs0Um8YzxrVJD5PCwFBUZtVxDVqSRW1TTmCrWZs/wk0kQleftQ+O+e7dt5+Jtm897+x2du38n
l8MHCISQQ1f26oBDTI3jQJgOhMXUIuQkxaRR5BDFFYMNnPcUwwotThgSpxOGxThEnE6uuemLqx76
YzPYiUPnNpClUaaPlenCCaJnvnhLlpP0++qRzzDDCQu2tipEN1BAAAEbIH50rWUKPlzp19t9/d16
c8/89+H3Frj4uuUwgoeyOqY4ubtqtWz5+z11/f9X+7mAA6rgQ8TCC18iDSZnOJO78llpewQkk/e4
17cDMlBuaWqgbSzAAd+t71026doBXcAUCu7NBkwh0KOkY5x1/e9LjXMcBKNjwBRiKYHXWyALy0e+
GPKGfTS8IZlgOKYS4hCCK+yhclwoOB0C0W8zLGJlbIjEJSqHiP6rHhPL98Mo9kaIf3MiFct1xCyy
T2k6UVlukqUbMaIti1ccIboOgAJMsbGNbnwjHOMoxznSsY52vCMe37iAAZqRN1b0Gxb7CKYtUpF9
CUhWg3YDRtyAUSiCfFcgj2aAA1Cykpa8JCYzqclNcrKTnvwkKEN5SQKo4JHB+ePeImnKKxEyior/
kxZOQoMBb7WISAiTSQIsorScuYluGFGZIwPkLaMAZpZcSU3OJBUat8zSY4UhDwbi8hqyUVGVs4Li
KvE2xWx2BZV4syY3l9NKJiquR12hQJHihiINccQt8QFZThhGsbB8ZzRI8k8MuBOD/dDuR6y5iUsi
IpsVAGApslEJB5EITujwMJzr2qZDdeDNuy00osx5YAMxWEPG5dOcgxKJr/JkEf8wpQMs+YkGm2Sk
rjAOYzHpSQdi0IFbKahqKVnKYkSnlqtIRKMKRWO5GmpRMkHUoROFJFCHykqMHpAnIewNAA6Tr8Tg
BAPGQhK0IoSrAJbtPY2s505m8jIiuahqgQlB/8SOotON1DQEfCxiRZcjVKV+qajhPCq74kpX3YyT
e/sJDVRx4hKSxC0+Ac3qtq4Kpa5SrHTBpGpOXvqgEyAIKlQ9bEgCSi1caUWWkGOiXpMz171iya7c
xOu6Qkta2/T1eo+6Tw27sgKKUCQu+0HY2M7jNpNQBGYTukl5JKeTL/LJW1dpy4MKgxkMuMAl3uLP
1VCCMJ6lymRmVO1xRrtaFb51qKhFF3a3W1WmmlGJCe1N9q6EKakM7za9O40pwysc7Yp3OabN5nfL
Jd/6traISjygSkJQnt3M9jWwFeR+e0Pf+ibnvqvML7kSvN3+AvG/DLwcbzr32UdKeDcLZvBxHP9s
SgjnMKkgFg6Fe2jhE6eww7r5MIt7I+JHknhMLt5rinEIgN/wuMc+/jGQgyzkIRO5yEY+MpKTrGQj
c8AA7IJxjHczY0HWGEw3pmuObwgA2nK5y17+MpjDLOYxk7nMZj4zmtN8ZgcU4MnYjHKDu2vRKn/p
ykrNMg1XDGcC2tk2UN7zbabcRzp7qc8WxXMM9Qzo8BnaMX9etGMEbUZCb6nRDkU0CxUN6ReaeIdv
3jRvJJ1FSmPJ0uHEdAo1DWpAdhpMCODAkmMt61nTuta/MZF4SX0lU3MT1RBU9aq/2eovqcDWxj42
so2tvtXq2kq8zqavGwjsYCOV2tZ+V7Oj8+z/VUabgdO+tn6HDe5xRyfb0Nm2Kbt9wG+T28ribje8
j2NuLr0b1OomILvjXep667vfuZn3ctD9yHuXL9/+Pje/D65wnAC8iQlfNAY80MY+GnzhyRG4xRnc
8Is/HNAoIIgBUFDejKe24yTX98aRg3FokxeJFT95cFYO872m/DgyT3fL/TvzEu985zUfzs0HnvMK
99zdRYf5z4UTdEESXHACUAjUo34QByhA6la/OtazrvWtQ90BJj+6tZMe869Duul/k0Ee0w7HETBA
7W5/O9zjLncXyADsJBd7usgO8aFv2gUQsDvgx4133iy9j2Yfqt8Dr3hqD343hTfj4S2a+MVT/x7S
jdfN47MY+YhOvvKej/Llc5N5Km7eoZ3/POo1DhzxjT6KpQ/n6VMve9KGHjetZ+LruRn72fN+zqtn
tN4Bnfts7r73xsfv7793+yUOf5XFPz70B518BQZ/z8035fOjr30m1v42y0fi9R+Z/e2Tv4fd51v1
4Rx+QY6//O5n4fkr8/0irr+P7X8//g8Yf8fMH4j1N+P95Z8Afs/+EUf6Rdn/ZVEADiAD+k0B4kT/
9VACUtECNqAFsssDipDCTWAUVeAFfiACTR+nbSDfQZoHgiAKbkkG9swBxhgH7k2DAJZjIEhunGAK
3iB0rKD+6NsL3o2AvY9jtEUu6YYN4qARIv+HDkYgDvXguzyA6AgLg1DTbRQhDcUA110hFiKEBHza
ERKgCA5RC7IYE7JLjUDhRegAGdkGFcbQBzDX3L3h20lACXbh3iRhGJ7YGK5LGSrHGsLfF95QHtIh
w/0hq5EgXe1hcvRhCukgis2hIGIbIe7NDYAIX1SiJe6FnEGeI/YRylwVcigiBDFicATiI0pUJF7a
JjJfKmZRgd2MpGiIDBLh3yHfbvCWVd2GDaRXTSySlZDiI4oiuvjilggjmdjACRCGR7hOcIBiA00U
BmyZScWHY0RMe+mIGQLOKpZiCIoXMS4VuTEjA3nTDAAAV3AHf7iATdQGBZCjnSRPaEhES3z/EIME
RQjgDwilYWV04xECoxZlo//544mBo/6dYggUFESYVE4kAAbohEps2QwsJFLwB0u8zUQAQMkoZAIU
FEVEjkXyFUBqo5fwI7noIzZ+4yw+GEEKCzwqpGgUVEHGwDgWiUvYBEsMjFW8REcSVAxgjA0gpEeC
JPeIJJmQZJh8JIMJJAF5EwkAQKbY5GZohEsWVAwYZE4YyFH0hERMZUhoZVWy5E8CpeAI5ZgQ5XOQ
ZQad5IidYk44YUkAgGw8pVa+pEvchAtYJDwupJ0gjEsYRQcY5EICwIaxllGCZbmpZa8NZgyZJQEh
ZflMFEboxJb5xE1o5VS+RF8ihVlkDFLo/wRY9GVFhkRdXmM+IiZhLodYDhJpppBixg9a0phhagSg
PIbqjM5D+AVJoM7oiI5M+IVBziVvrOYHnuaXAOdxEOf3MKb4nJ9O8ERSMORvpmZpIuFrcht0NpBx
+lVrUtl0eokHbZCGuNX4VGd0Codwesl1jqJ4KhVyhk95juZ44k17Ysl5hqdJntZ2EtB8CmB8euOp
pSfiZaf04Z5/vmeW3CfTDaj4vN4IZCGDNihCMIAEcFMHQECyVaiRLQCJECgGGqjhIWj4vB4EjAAc
juiInpcZZQACqJmKrmiZGYAIaOiGcqOHfg+IZuLx7ed4wei64GhJ9ueYiBrl8ahVzKiODv+ijKLi
j9qo8QnpkBBpkT4Ek4qTkwpOjeYfk+anlXKoJiIpmADp4l3plBZplCoHln5lXSlp74Hpk5LLmCZH
meZGleKfmq7pmLQpcrwpbsTp+80pnX6JnRZnmBrRjHqp4vFpn6qglmpeoO6NnrqfoR7qlfzpRXHp
mWapgEJqSCYq6S0q3jRq+T0qpuagproep96Np5IfqIaqaY7qpfpol6Ip76WqqpoLq6oipXoJoQae
rM6qvNUq+JXqu5zq9m0AhVqosQbZAsQir9LqkbpqpeJfB6Qoi04rtdKWAWTosq5qsx5mklqqrWar
tk4YsLbLoMLq7O0quPqRr9LfuK6LsGr/H7qma4FuK8t1q5yua6e2a2lKaiPe6pbkKuDFq7ziBr+i
p7+WlrnKnsAObN7gqwTqaz/a6546bLBCLFgWLH06K64mbOotLMM6BsY+58FeCcDancd+rJGK68gW
EMei3smiLJRSLCBa7FCWq7f+KsyekszSEJ7exrtG38vCbMjuRs8KpsQ66s4GI82C5NCaab2+6s2y
a85WUdKyUNG6J9Tea6tO7byqrMb+a8t+XgggANYxQAOU7dlendliXchx7W40LZwuLWoebfnlQB61
gAEgQAvc0QogwALsrR317d/mkdu+bdWqptwOp83SoQeEAF5xwAhALm9AruQWrpXAbZ4m/655Lu4R
ygAD5EAOKAAXdkUMMIAO5AACmGhYmO4NKIDqWi55Hi4EXe0Mcq4RSoDR6IAK8KJjOED/6AAKWIBu
+O5DmAANwm4Qya51au4w2u4N7m7KlNJtGC9OQBT1QgQDVCPyDgfm+izzyqfzoiDqUhANKMD0OEbr
UlAMOMD5dkX6ru72Ji+9UifdomDjguwfVi5O6G9X8O9DaICyxq+6zi/O1S8IKkDdka7pVoYBJNQL
OIBtNLBjsECECjD3Ki8D0W5X/KwFQm9X4K5tBG/v/q5jiHBXZK8FXzABC50BgyAFSO9DeLBtbM/1
znDuRG4Kq7DXcmvWGmH5Ts/44sb6Tv/P+97GELcEA7xuDldG9xrt1yIsHZ7L/eZG5fpvZVQuAC9x
7K7wgbYwCIYuDXhu+9rG+JbubpTxAmux5jxVZVAABh9Qf8nJbfDuh4bv81IACO9G8BKvHlsACqtx
nEDFzThGBxwABATmULUWxsCP5gwMHT8HHTNOPTot2D4iBFQwbzDAI1eGJgMys8SFJ+KECxwAJpNW
X2kFk1RGB5AVluiKaDbIOsXtbRxYLCFypIUttHpAcFgAtu4GL3syfF1jCGwABO8wbpyF9ShxcWKE
z6qKLFcGPOYjZgRwV5Qs9H1Xjmlw+SEi/nJxVyAzGeKiyDoGeYgmDvSLlOHyxBpsxnr/Mjd30xvj
pyOCsx6WZctxi20cDz5WhjXf6HZm8/dqI1seRcN682QwMrqIJjtXhkLLmDoj7UITbUCX4g9qy3qt
lykatI4sSFRI4Zc09Dgz9HP085L+8ypqc/lRVmhcNIE0MdYyECKCdO3ehkzrBkmnqUlHNDATbDzL
0ET3qEjniUqF2kN/ak63807ztEZvqhHrDuYEx03H6lGHdFL7Rk8n6E8XpRejIDafdFYTqEvP9BOT
bFGj6lRLdFX/21XX8cpy1y+eNSWnNTwvNaluNQh2tU7LdcquFkoPqV1vFwRcomAPNmEXtl549ShK
HIku9h2RMA6G9QZ/tZT+9Wo9Ggv3/8bHOahmbx0BOHbqxYCxUShdb+3GAppld/FeRXW8fUCx1tro
Hppkk6kdg9hpdyhpqba1vVkCvTaLvRn55IAyt1hk4wRwN1E1584NLFt91faWpnZZ91sWQ4T34PCm
vXCOQoQV91Ae+zV20wty5IADtNf2WDdt83ZbcxNuU5sNIMD56k0Qb5oZOxBErPcYA1F8c3dKsLdy
yPBsZMp9MxhzK+ptP3e/6a/eULe9PVDgZDcQkXeTdvdz/HF/fw0MA7h5j7VDpbd663dG53d9Axp9
c3eIU9F9u8t/J4cMj8uJL/eF8zBdaTi1Ve65MDigVa670HiDS6+7OPhy/PG48LiFj/+2IMF4sAWx
lox4sIW4mCA5FSm5c6x4csR3lfB3eQt5HxF5sOGwluB4jdOLmAA5FUnul1c4JJdSlUj4iQU4Uzu3
7I3vbzB5sKVvc0B5FNH3nKdxdJgxbVB5lRvzUGF5lsPaB3D5okVuc4B5FkHuoZM5dLwwbaB5mrf4
0744gR9c6G5ABuD5taFuBYCApveRDSiABWzAJke5AzzABwgvnKl5XbP57KmAAigAo1vbCChAdXBT
rR+A9kbHmUjwqks6/br6td3AsfLYAAxAsX/A4QgOsRe7BwQAshe7d+9akj27ARQ7BwCAAiTZ0i7o
ZhuEADjAtxcEBXw4b/jduINc1aX/+0AkcMwle+FcQLLHNnm2trFWQAUkOwNALGsnewRgQLLjGiu5
MZL9e7I/gKAfGQEA+4+KKGOz0Qo8fBsZAMN3kxtKfMRLPKbIIXMQ/LFWQAck+8KnJWnD51qzLPgy
Eau79RIFeNA+eMtXPBuePFDXIc1DRz/n58rjfKXjjcvfvD1PasyT/Lc6INDbV8/DPBLt/Egn/bv8
fMmj9dC7Jm7gzwftOpXy++ppUH/Y8m6AJ5hkT847YqSEgE9BB9gPB9MjfW8ERr6Qidc7msxLt5bu
B0KHReSgzOYK/W0wxQnAJHrVY0q52twvYiRWJmS2yfX04LkU5HCRI3I85ZfwRPUm/31rUeQDRCaW
SL7aFz4U7wZSzBLkcyfnv5jn19gzKjRCpkfcyzbf20ZGQiYt20Zc1nRIzZfnN+PhX8dD9KXlQI5t
hsXw5JPpME7n0GbsSL3RBwhVIkXw+I5fYA5uHo9GtEg+EX/t1Cbt/P5j3OZWgvJEQM7Y64ZE2IlL
If+EIOP3d7/koA7nBE/r48TaK4dpLSWBzFKpeCf+AEaxXIR3AgVAnNChI8QKEiFsEARAwcVAhw8h
IqABkWJFhx8+WNToMAEFAAIHngiBEEeCBCFwoBx4ECQJEitCgNxoEYOJmRVrzkzwYCCFBDpi4Aiq
w0aMhANjJAVgNIbDpA6LNtXR4f/jwBlSb0q8uZVrV68WMW6MASDEQAwJbMwwmQCDwgc7ga7lqeMk
0KUhAJi0sTYBDrUm287M+ZXwzLAKm5bkeWJnAoEYADx4GyPETx2S6ZZdS4LxW4GS30pOAGDFZZM8
K78li3ehQwgNC2scvPHEQhIzBu5d63dt29Sjy4YGQGKsSbVlGQPmqjV284qvt/qkWFv01chnUQPA
gLlDgu4d6LJ9awNyAhLLJ8Y+/LV2jI4D8W5/oHbh2Kah2Zqm4FGm19ld/6sILh3OCs+8zhwjMLLR
KPtJN5NwWKGxn0ZLIAbsEsBtJuac69DDitarqLi1yqKAJxcAmGGypx6gQIeS2qr/yz68XMDhLBxw
YMhEHVDUUDabPmzuMLzkasg7gtCqi4S7LMOsrvfoAq8y0xQq7SQS+irpIACM5GnAgaAL0iwgZ6oM
gNZuzNGFHXukkS6ebrvsgbHKymwv8FDsTyMOxSwszJneoig/uigYS6Du6GrLBoGOZCxRok6isys+
vwqxK+7QenRRKu3DMqHaVLSsLsIC3KpUiE4bLUYXo0RyBrIQmzJNhmI4rz28Yni1tP2ySq/PXwuz
FKKxOpCQVZP2O7DCGOt0sqwZm5xrIGR9Om+jU4HdaMiPlgTv1Y4mW8quBgdyNjMdvjUxQ8xwzcyj
ZCmYUs43H/ozSGwhwm0GvEjA/4yjjqqVl923drJv2hAMPrfXbAmzVzbLdDiB0WbnFHfKUe0CeL5R
I4UVPSEz+upbyQAAD2NOmURqKX9PBpBMl3U6KaaD0c1LXYOhndehGXx64K6llmwx0A19ZdhobUO2
SNIVSta5Kaaoci+w9+q61TLpCHTBX6x+PHqrbZuiykrwinpVIKbJpffJOo8sat52T0IUqJSipdc1
2MTE1yGs9woBawy0nqspgSv+rGKpTjIbUmuJ9porhy1CUVHMWnyRLYMvdnGFjfE87z33iPN4K0q9
Evam7kYKIdD3Ng913NoaqswGluv8Sm+aXhZQWppbjaoqq3X4O3Aef44BxYaMWv/Y8eUfMt0pjyFz
oVufbPAphLNsiM+nht7qwOe0md6Py+kzvTZ35psPuV3TbPQOLp+6W6o2DLA7d9SzuuOJXXETZwsy
mOr2lsDoAHIdup0OmDYhG4TPI9IrGfUI9yoM5C9hdYHf0JSHPosUsCLdWUtTJHSaoljsJ8mBC14E
aKABmaR2jVNP0roCpYh9xITZsZC4etY02hXmgBS53Zd4hz+4dI9BU2Igl6z3PRTNRzLfyaAGvea8
gaQEbzMTCUJWMhINwSQEGtpXF1HigtqJMQSwueJRzAdFihxGjDiwShl1cBDGjQRtcSyISwgSO7zJ
cSXnaWMeeTSShoixjwgMAeP/ONicHooxXkchoxlHkhBCxtFWMWmjSgBpR0w+UY1368qi8EaUpyBl
ilKJys5ydbCroNKNoytapWDIlaE4xY2nRMrTnJJKdGlolrY7301ud0iIwDGLc0RYGOv0SKJEsosE
QUn2ZsbJTgJLitP0pTUHUk2NJAybiYxND7HpwnB603Et+wrpuqLNcALzl4Jp5zo/Bs8+qVOeuAsn
PSmiIh9Zk5ykemc9N4JONfbzaMSMjUC/FkuAmuqf9lyoVxD60HQqVKJdwyY+K0pQ/zS0og6JKPo0
WtGPIq2jDPVnSaWJ0oSqNI0XpShLwRTKD4FTpK+cZkglOlKNYFSiNHWITx+q/1OYXuSlMAUqNYvK
UpyadKgUEarXlrrQp64xqSo96lEBOlWY8vShWJ1nVVEaVXc21ak27WQDMIARta6VrW1161vhGle5
snUAZuXKBiAwV73ula99XQDjYEbWh2iVpRs402ERm1jFLpaxjXXsYxUbAMB20gKQtexlMZvZM6ng
Vz7T7GdBm9kA7NOaDGAAaFCbWtWulrWtde1rVysAu25lAwiA7W1xm1vdGmCyW/FsaIEb3MiSVrAg
AmtJvSomri5UrC0trg4Im63myjO62TxuR6/K0ZJWt6TLBWhyg+Tdek7Xoc/lbp/Iu07uCosEMsWu
diECXvXO9rk6CJF59sY1Mf958AGl4RGquCJfD4lXnun1IXxrCk8DY3O9CpVhvlq4zuzWF7r0fe59
yzcnYJ2AVe4pSoT1a1FrEljB7jUggnNqYeYt2JoNhggJvIfGonyqA62E54Tre96K3pcErNKw3yjg
retRQGK8Ish+uDaDAcZxgALxyQk4018XccZEINlPB1gl4A6ReJ0s/imKg6ri5Xm5ky5+yANsAOOQ
PEB1K8CyiaeJY/OKmaz3Dd555rSmciXFQloi0EEmh0YcTNYnGAAJZQii4Z+oTig/IfJULKNl53B5
nHBWJJilSmeoWpqlZrYKT/YyrYQsCtH1lHNxdSxRjCSlKQ5Ci4aFgqWkzMX/MiN5AAZGkqCNzKDH
aEH0SKblzHJdhiNjuud1M8ppHmI6q5o+GpnV2GATuegsyWLUQ0otz1MLNtUPxci06bISExnPOyeY
UwxoDR/VdSB1liYBGtn9a7YJO3izKzaBmP1VCkNb0tPstoegDcUGs5ourTR3uFeS7Rtjut9ldvZW
YQgxj1AGPHSZdbCdiQFrYYC4DrneT08QAynNG9jBu0xTsGRsl+5b2SfN8cMZFnANeprDD8lQBzBw
oQ6gu+NxZni+qQtzldo5NxZyAcBwHYNjqfsyJqo4Ulj108Z4iy0lX3SdXIRuCmxH5SNGtkT5DXR4
/rtDMkefp1cQyvba0Vp4/9T2zylM9npSOjY930idVNT1adKdny2/5stLHHehW5fC2yar3OXJ9+Xh
vM1676TiOxl2wQce8C8sPNwrT2GqNvUqaGx4sL7+UMlnvpt+76ini2v4piIenpBX4+cJ43oojn7O
lK+95eur+qGyfp2y1yDsYcnyXwH/7IP/ldmZh3rB6h6mvA+nBwDnAulPn/rVt/71sZ997W9/+hEQ
+4egz33xj5/85V+A6btiAQ+Un/3td38BjN+nBSSgAfW3//3xn3/975///ff//UerOTLAAP6vAA3w
ABGQAESAMNTP/RzwAbUP/jSvIjKgAA7gAjEwAzVwAzmwAz3wA0EwAwlgBP/CqQJD8ARRMAVVkABY
4FciwABUMAZlcAYHoAbgyQE0YAR0cAd5sAd98AeBMAiFcAh5kACMrwMkgAiVcAmZsAkboAQI4wVn
cAqp8ANrcAI3L/e+b8BCj7nQL8C2kMHiT0yQb3mUj6yYr9PGUNW68LvCcNLacLy+kKlur9ImD/ee
Kw1VyvlWTguPTfj6hPiSbw0/pAwd5wybSg9Rig+97vL+sL5oD9UIEeDmMNNAxhH/rg6xkPD8sA+f
KxK5bRLLrhKb7RI7caPucBM5MQ/f0BQ/kRSdSxJtTxbxMPUwTxM30ffQRxC5QhdXDBZFjBbtkPSC
7xQDCxex0BeXhxdXChL/gbG8hLH0UjH24vDtXA4ZJ1AZHYcZb0IbN234WtHhZjEUXdEWrzEac7Ea
F+4RXxEcp7Hv3rF01FHCbhEdk3Eew4kbDQMfpTEQwzHaRNE5DNFrEHGoFHG7AjLx+NGa9JGknNEd
ifGmnnG+ynH56pEcVXEVzdETiwsUDy8hY2Mgj6YgjeoiPzIjNdIi2bEjJ/LA4jHyWlIMKxINTXL1
QLL3FtLnVlKwPNImx/Eka1ElM9EeszGv+uookRIpGeAfY88ok/IpofKtECAmHwIDKCAqsTIrP8AI
4YkCGAACwDIsxXIsybIszfIs0TItxZIA0IgwRgAB1DIu5XIu6dIAOMt2RK5SK/USKbkSJWlgLwHz
KG8gnGIgMA1TrwazT1zgMBnzrUIgB+DpBiBwMilT+mSgQyozMx3wBQpjMRvzM9XqMVFSBwICADs=
--=====================_4863437==_--