

The Consortium				
Р	Partner	Country	Main roles	WP leadership
P1	ECN	The Netherlands	Co-ordinator, project management, ICT specifications and development, demand-supply matching	WP II, WP
P2	Eneco	The Netherlands	User aspects, experiment A	Tasks I III.1-2A
P3	INPG/LEG	France	Development of simulation tools for fault detection, analysis and diagnostics, lab experiments	WP I, Ta II.3
P4	Schneider	France	Electronics, system development, experiment B	Tasks III. 2B
P5	EnerSearch	Sweden	E-market agent algorithms and architectures for power applications, exploitation manager	WPIV
P6	Sydkraft	Sweden	User aspects, evaluation of economics	Tasks I III.3
P7	BTH	Sweden	Economics of network security models, intelligent agent architectures	Tasks I.6, II
P8	ABB	Sweden	Intelligent load shedding, experiment C	WP III, Ta

- Due to the increasing complexity, in several senses, of networked dynamic systems we need to reassess current system thinking and software methodologies
- We suggest a holistic view on systems based on system theories in other disciplines, i.e., biology and natural sciences
- Furthermore we suggest a suitable methodology supporting systemic requirements, i.e, Information ecologies/societies and ecology invariants

Much work remains to be done! Not the least evaluations and extensions of our platform SOLACE

Rune Gustavsson

FIPA WS 2002-07-24

37