Allia: Policy-based Alliance Formation for Agents in Ad hoc
Environments

Olga Ratsimor, Dipanjan Chakraborty, Sovrin Tolia, Deepali Khushraj,
Gaurav Gupta, Anugeetha Kunjithapatham, Anupam Joshi, Timothy Finin
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
Baltimore, MD 21250

May 3, 2002

1 Introduction

Recent years have witnessed tremendous growth in the necessity for pervasive mobile computing. Ad-hoc
computing is a key component for this technology. Another field that is undergoing explosive growth is the
area of intelligent agents. The merger of mobile computing and agent technologies has created a new class of
problems that must be solved in order to make pervasive computing a reality. In this paper, we are proposing
a solution to the problem that intelligent agents face in an ad-hoc computing environment, as outlined in
the FIPA Call for Technology|[5].

Ad-hoc networks are very dynamic and the network topology frequently changes as devices frequently
join and leave the network. As a result, connection between devices cannot be guaranteed. The devices that
are participating in such a network should be able to easily adjust to such frequent changes. The formation
of compounds between agents is really important in ad-hoc networks. This is because it will enable different
agents in heterogeneous mobile devices to collaborate and use each other’s functionalities. Hence, one on of
the meta goals behind formation of compounds is to enable agents to utilize services offered by other agents
in an ad hoc environment. We expect mobile devices to range from being extremely resource-poor to being
fairly resource-rich. In such cases, agents on resource-poor devices should be able to recognize and take
advantage of the resources/services on the more powerful devices found in their vicinity.

An obvious solution for forming compounds is the one in which the resource-rich node maintains informa-
tion about services and agents present in it’s neighborhood. All other peer nodes would utilize the services of
this resource-rich node in discovering services. In accordance to FIPA, this resource-rich node would provide
the mandatory AMS and DF services, thus acting as an agent platform. There is an overhead associated in
“electing” a resource-rich node to host an agent platform. Moreover, a new device moving into this struc-
tured compound would have to discover this agent platform and register it’s services with it. Another major
drawback with this approach is that if the resource-rich node moves out of the network, all other peer nodes
would have to reconfigure themselves to the peer-to-peer mode. Highly dynamic environments where nodes
keep moving in and out of the network would further aggravate this problem. For enabling service and agent
discovery across multiple hops, “leaders” in different compounds have to federate with each other. In the
context of ad-hoc networks, this would require those “leaders” to be in direct connectivity range of each
other and this might not always be the case.

Our solution introduces a different approach towards handling the problem. We introduce the concept
of peer-to-peer caching of services between nodes in an ad-hoc environment. The main goal of platform

formation is to provide an agent better access to services in the vicinity. Our solution describes a policy-
based approach of achieving best-effort service discovery in ad-hoc networks.

We envision each participating device in an ad-hoc network will be able to run a lightweight version of the
platform components like yellow pages and white pages service. Putting a lightweight platform on extremely
resource-constrained devices might overload such devices. It is essential that each device have a set of bare
minimum platform components like AMS and DF so that it can host an agent platform and operate even in
regions of disconnections or stay independent. An agent in that case does not have to depend on other peer
devices to host itself. The Main Container of LEAP [2] that contains the Agent Management System and
the Directory Facilitator runs on standard laptops and H3870 iPaqgs. Looking at a few types of less resource
rich devices, we see that cellphones today have the capability to host advanced runtime environments (like
java virtual machine) and the memory capacity of such devices is increasing. For example, most i-mode
phones support Java Micro Edition [6], Mobile Information Device Profile [7] or Connected Limited Device
Configuration [3] and have capability to store around 300K of data. Some phones have a run time heap of
180K (e.g. Samsung x350 series). However, we are aware that the current version of LEAP on PersonalJava
[4] requires around 700K of dynamic memory and cannot run on cell phones. Cell phones can be considered
one of the least resource-full devices amongst the plethora of heterogeneous mobile devices existing around
us. Considering the curve at which the capabilities of these phones are increasing, it is not unreasonable
to assume that cell phones and other devices of tommorow will have enough memory, processing power and
energy so as to be able to host mandatory components of an agent platform. In addition to these platform
components, the device will be able to host at least one agent. The main purpose for formation of compounds
was to enable agents on a device to better utilize services/agents in its vicinity. Our approach concentrates
on providing a solution to this issue without imposing the dependence that devices sharing a distributed
compound will have on each other. The yellow pages service component registers only the services that are
hosted on that local platform. The white pages service component of the platform registers only the agents
that are hosted on the local platform. Each device has a policy that reflects the device capabilities, user
preferences, application specific settings etc. A policy in a device governs the way it is going to present
itself to the other platforms/devices in its vicinity. The policy governs the way in which the device takes
advantage of resources/services in other platforms in its vicinity.

In our approach, every node advertises its services to other nodes in its vicinity in accordance with
the policy governing that device. These advertisements are broadcasted. On receiving an advertisement,
and agent decides based on its policy, whether to cache it or reject it. We introduce the concept of the
“alliance” of a node. An alliance of a node refers to the set of nodes one or more of whose local services
are cached by it. Thus, a node explicitly knows the member nodes in its alliance. However, each node does
not know the alliances in which they are members. Whenever a node leaves a certain vicinity, and enters
a new vicinity, it constructs its own alliance by listening to advertisements and becomes members of new
alliances by advertising its services. Its exit from previous alliances is also implicit since nodes governing
other alliances detect its absence and removes the node from their alliances.

The local policy of a node dictates the ways in which the node wants to advertise itself to peer nodes in
its vicinity. The rate of advertisement is also controlled by the policy. The policy can specify algorithms to
allow dynamic adjustments of advertisement rates based on mobility of nodes in a neighborhood. Policies
also determine the number of members that a node can have in its alliance (by limiting the number of remote
advertisements this node can cache). Alliance of a node can span across multiple hops. The advertisements
in that case also are sent across multiple hops.

When an agent needs to discover a certain service, it first looks at its local platform to check whether
that service is available. On failure, by looking at its own cache, it checks the members of its own alliance to
discover the service. If the service is still unavailable, the source platform tries to broadcast or multicast the
request to other alliances in its vicinity. The local policy determines the method (broadcasting or multicas-
ting). Multicasting is used to prevent broadcast storms in the network. We use policy-based multicasting

where the node multicasts the request to other nodes in its vicinity where there is maximum chances of
obtaining the service. A node on receiving a service request chooses, based on its policy to either process it
or drop this request.

Our flexible approach towards alliance formation does not have the overhead of explicit leader election.
Every device in this environment is self-sufficient. However, it utilizes resources/services in the vicinity
whenever they are available. Dynamic network topology changes are automatically reflected in the alliances
that are formed. Hence, Policy-based approach towards alliance formation buys us the advantages of a
compound of agents. Using such policies, more traditional compounds like those utilizing explicitly elected
leaders can also be achieved. Our architecture can also take user preferences into consideration. This is a
major advantage since mobile users necessarily want to control the ways in which their own resources are
utilized.

2 Device Architecture and Platform Components

Every mobile device in an ad-hoc network will run a lightweight platform comprising of the following com-
ponents:

e Generic Container: A generic container that can host agents. The device must be able to run at least
one agent.

e Lightweight yellow pages service: Services on the local device are registered with this component. This
component is the Directory Facilitator (DF) component of the FIPA Agent platform specification.

e Lightweight white pages service: Local agents will register with this component. This component is the
Agent Management System (AMS) component of the FIPA Agent platform specification.

e Policy Manager: It controls the behavior of the platform. Local policies can be used to control various
aspects of the platform like advertisement frequency, caching policy etc.

e Advertisement Manager: It is responsible for advertising the local services that are hosted on a mobile
device. Broadcasting is used to transmit these advertisements in the neighborhood.

e Cache Manager: It is responsible for caching service advertisements that have been received from the
neighboring devices.

e Forwarding Manager: It is responsible for forwarding advertisements and “request for service” messages
to other neighbors.

Figure 1 shows the different components in a single mobile device. We describe the new components briefly
in the following section.
2.1 Policy Manager

The policy manager is responsible for enforcing policies to control platform behavior. Policies are specified
and registered with the Policy Manager. The Manager is then responsible for ensuring that all components
of the platform are in compliance with the specified policies. Using this mechanism, policies may be used to

e Restrict platform functionality in respect to device capability
e Specify caching preferences like refresh rate, replacement strategy etc.

e Specifying advertisement preferences like frequency, time-to-live, algorithms etc.

Agent Agent Agent

Lightweight AMS | Lightweight DF

o <

) " —
9 o Forwarding Advertising | £ 8
S | Manager Manager |& 3
o z o0

Network

Figure 1: Device Architecture

Specify priorities among services and how to share available resources among the services

Specifying advertisement and request message forwarding algorithms

Specify personal user preferences

Specify application specific preferences

Specify security restrictions like access rights and credential verification etc.

Components running on the platform would coordinate all their activities through the Policy Manager.
Because of its interactions, this manager can monitor the activities of the different components and notify
when policies are being violated.

2.2 Cache Manager

The Cache Manager handles service advertisements from neighboring devices. These advertisements could
be services that are running on the neighboring nodes or advertisements that are being forwarded by these
neighboring nodes. The Policy Manager coordinates with the Cache Manager to govern various characteristics
like entry expiry, replacement strategy, cache size etc.

corresponding to this service. The cache maintains only hints. Due to the dynamic nature of the network
topology, it is not feasible to guarantee that services found in the cache are currently reachable. Whenever
there is a hit in the cache for a service that is not currently available, the cache entry is immediately deleted.

2.3 Advertising Manager

The Advertising Manager actively broadcasts service descriptions registered to the local DF. The Policy Man-
ager controls the rate of advertisements. Various policies can be employed to adjust the rate of advertisement.
We have described them in section 3.2. For example, if the network is fairly static, the advertisement rate
can be slowed down. Also policy could be event driven, events here being the arrival or departure of nodes

in an alliance. Advertisements can also be assigned different priorities. The Advertisement Manager also
controls the alliance diameter (explained in section 3.2.2).

2.4 Forwarding Manager

The Forwarding manager receives Service Advertisements and Request for Service messages. It decides based
on the local policy whether to drop, or to propagate the advertisement. To prevent broadcast storms, this
forwarding mechanism can use multicasting to selectively forward advertisements. For example, this can be
used to forward advertisements to more active or resource-rich devices in the network.

3 Architecture Details

The overall design of our system is shown in the following diagram. In this section we describe the discovery,
caching, advertising protocols and request routing protocols to be used between compatible mobile devices
in ad-hoc networks. We describe the different protocols and principles in the following section:

3.1 Peer-to-Peer Caching

Every mobile device consists of an agent platform. We extend the functionality of a Directory Facilitator
in the agent platform in each device with the help of a service cache for remote services. Each mobile
device that is ad-hocly connected to different other heterogeneous devices in the network maintains a cache
to store service descriptions of remote services. The Cache is controlled by a local Cache Manager. Each
Advertisement Manager in a device, after a finite time interval (discussed later) broadcasts a list of its local
services to other peer devices around it. To do so, it uses the local Forwarding Manager in the device. These
local services correspond to services of local agents that are registered to the local Directory Facilitator. The
Forwarding Manager receives all messages from the network. It decides based on the local policy whether
to process the message or not. For example, if the policy of the local node is such that it does not want
to form its own alliance, then it would not accept any advertisement. The Forwarding Manager passes the
advertisement to the Cache Manager. A Cache Manager in a remote device on receiving the advertisement,
decides based on its policy whether to cache it or not. For example, the policy of the cache manager
could be that it will not store more than a certain number of advertisements. This policy is driven by the
resource-rich ness of the device. The policy could also be user-driven. The user might not want to store any
advertisement. In that case, the size of the cache for such a device would be zero. The idea behind passive
caching of advertisements rather than active pulling of service descriptions from neighboring nodes has got
a few advantages:

e Efficiency in detecting the change in Environment:

We follow the push paradigm for such service advertisements since it enables us to detect in an efficient
manner when the ad-hoc environment has changed. When a device receives a new advertisement from
a new device, it automatically knows that there is a new platform in the vicinity and could potentially
be included in the alliance. The pull-based approach of explicitly searching for new platforms in the
vicinity would have imposed more burden on the mobile device hosting a platform. As we shall see
later, the frequency of advertisement could be adjusted based on the relative stability of the alliance
and hence the burden imposed on the mobile device would be less.

e Advertisement Collision:
In a standard pull-based paradigm, a mobile agent platform would have broadcasted a request to all
its neighboring platforms asking for a list of local services. The peer platforms would immediately

have sent a list of services to the querying platform. Such a solution has a potential danger of the
advertisements from different platforms colliding with each other at the receiver’s end.

e Flexibility in handling advertisements:
The receiver receiving the advertisement has the option to either store or reject the advertisement based
on its current policy. The policy could be user-driven or resource-driven. Either way, we guarantee
more flexibility of handing advertisements in the system in this way

The Cache Manager is responsible to handle remote advertisements, store remote advertisements of
services, expunge the cache and also handle requests (from DF) to match services present in the cache. In
this way, a platform implicitly makes its services available to other remote devices around it. The Forwarding
Manager, on receiving an advertisement might also decide to forward it to members of its own alliance or
broadcast the advertisement to all other nodes in its vicinity. This is determined based on whether the
advertisement is meant to traverse multiple hops (determined by the sender node of the advertisement).
member. The sender node becomes a member of the alliances of the nodes that cache its advertisement.
Figure 2 elucidates the concept of alliance formation in an ad-hoc environment.

Medwt | wooa 1] Node Alliances
[, [s2s3
| .55 M- meada? [52]
i Hode?- podedlsd, 55]
Hoded Modiad l'::dalhi.ﬂ]
e Noded: &
2 Hioded: noda s 1], noda2|s2] noded =]
et | Hisdieh
5657 58 e R0
. i¥1 52000
v |

Figure 2: Alliance Formation in Ad-hoc Environment

The cache expunge policy depends on the policy specified by the Policy Manager. Each advertisement
contains a lifetime (specified by a time-to-live field in the advertisement structure). When a new adver-
tisement is received by a Cache Manager, the Cache Manager decides to either accept the advertisement
or reject the advertisement. The Cache Manager decides to accept an advertisement only when there is
sufficient space in the Cache to hold the advertisement or when an old advertisement can be removed out of
the cache.

3.2 Policy-based Advertising

We introduce the concept of policy-based advertising of services by the Advertisement Manager. The pol-
icy may potentially reflect a combination of the user’s preferences, resources present in the device, and
application-related preferences. Various parameters of the advertising are controlled based on the policy
structure of each and every device. Thus, each platform in this environment may follow a different policy in

advertising. However, the advertisements will follow a standard protocol (e.g. FIPA Tell protocol). In this
section, we describe the different aspects of the advertisement that may or may not be influenced by the
policy.

3.2.1 Advertisement Frequency Control

A very important aspect of advertisement is to decide the frequency at which the advertisements are going
to be sent out to the platforms in the vicinity. We enumerate the different possibilities:

1. Constant Frequency:

Each Cache Manager in a platform sends out a list of the local services that the registered to the
Directory Facilitator at a constant time interval. This time interval need not be uniform across all
platforms. Each platform might have its own frequency of advertising. The immediate advantage of
such a design would be that a platform having inter-advertisement time interval of t would be detected
within ¢ + § where 0 = network delay in message propagation. However, such a design choice has
the disadvantage of network overhead if the frequency of advertisement is too high. Moreover, high
frequency of advertisement may not be needed in a relatively stable ad-hoc environment. On the other
hand, in a highly dynamic ad-hoc environment, a low advertisement frequency might not be sufficient
to form an alliance.

2. Variable Frequency:

Each Cache Manager in a platform may follow a Multiplicative Increase Linear Decrease (MILD)
algorithm or a Binary Exponential Backoff (BEB) Mechanism to vary its advertisement frequency
so as to adapt the advertisement rate. There will be a threshold value for the inter-advertisement
time. In this design, a node will send out advertisements at a high frequency at the start. It will
follow the MILD or BEB algorithm to increase the inter-advertisement time (and hence the frequency)
based on whether it is receiving any new advertisement or not. If it receives a new advertisement,
it knows that there is a new platform in the vicinity and hence goes back to the starting frequency
(in case of BEB) to advertise its local services to the newly arrived platform in the alliance. Thus
if the environment around a platform changes rapidly, the advertisement frequency would be more.
Contrarily, if the environment is relatively stable, the advertisement frequency would be less (following
the BEB or MILD) and hence would impose less network overhead. If in either algorithm, the threshold
value of the inter-advertisement time is reached, the algorithm starts from the beginning. This type of
advertisement policy would be adaptive to the mobility and changes of the ad-hoc environment.

3. Adaptive Mobility-based Advertisement Frequency:

In this approach, each Cache Manager sends out an advertisement only when it receives a new ad-
vertisement. A new advertisement signifies the existence of a new platform in the alliance. Thus, it
sends a list of its own local services immediately in order to be included in the alliance of the new
node. This type of advertisement policy is highly adaptive to the mobility and change of the envi-
ronment. The overhead imposed on the network is also adaptive to the change in the environment.
In a highly dynamic ad-hoc alliance formation environment, the network load (due to advertisements)
would be relatively more than the network load in a relatively stable environment (since there are no
new advertisements). However, problem with this policy would be that a new platform might remain
undetected for a long time in a relatively stable environment where the advertisement frequency is low.
A combination of variable frequency techniques to alternate advertisement frequencies along with this
scheme would be able to avoid that problem.

The advertisement scheme to be followed by a platform or an alliance would be handled by the Policy
Manager in each platform. This would provide the required flexibility to handle user preferences in using up

the resources of its own mobile device. Figure 3 shows the control flow between the different components in
the sender node and receiver node in sending and receiving advertisements.

" Nodel | | Node 2 |
| Policy | i orop ;
i Manager ! i Advertisement i
| ¥ i i ;
v |
1 |Advertisement| | i i
i Manager | 5 5
1 1 1 A 1
: # ' Advertisement | - Cache |:
! | . |Forwarding ;
¢ | Forwarding [pooeoo — Manager Manager |
' | Manager | ! £ i . [
i L | Forward ! Policy :
i ! Advertisement E Manager i

Figure 3: Advertisement Flow between Nodes

3.2.2 Alliance Diameter Control

Each advertisement contains a hop-count field that would decide the number of hops to which the adver-
tisement may be propagated by receiving platforms. This hop-count field determines the diameter of the
Alliance of the receiving platform/node. This is because, any platform within the diameter would have the
potential to cache the local services of the Directory Facilitator of the source platform. In a highly dynamic
environment, a small diameter of an alliance is more desirable. This is because, if the diameter is large,
stability of a platform in an alliance would be less. Hence, the information of services in the cache would
become stale quickly. For implementation purposes, we will be limiting the hop-count to one. Hence, a
platform will only advertise its local services to its one-hop neighbors and an alliance diameter would be one.
A platform on receiving an advertisement will perform the following activities:

1. Accept the advertisement and store it in the cache if the local Policy Manager allows that
2. Decrement the hop-count field of the advertisement

3. If after decrementing the hop-count field, the value of the field is zero, then discard the advertisement
else
Forward the advertisement to its one-hop neighbors if the Policy Manager allows that.

Due to resource consumptions and other user preferences, the policy in a platform might decide not to
forward any advertisement message to its one hop neighbors. In this case, the advertisement would be
silently discarded by the platform. When a platform decides to forward an advertisement, it sends the
advertisement to the Forwarding Manager. The Forwarding Manager manages the re-broadcasting of the
advertisement its one-hop neighbors.

3.2.3 Advertisement Structure

There are two types of advertisement structures in our design, viz. the Service Advertisement and the
Platform Advertisement structures. The Service Advertisement structure is used to send out a new ad-
vertisement describing all the services that are registered to the local Directory Facilitator of a platform.
This type of service advertisement is sent out only when a node receives a new advertisement or somehow
detects that there is a new platform in the vicinity that may potentially be included in the alliance. This
is determined by the Policy Manager of the particular platform. The advertisement primarily contains the
following information:

e Service Description(s)
e Agent Identifiers
e Platform Identifier

e Network Address: Network Address refers to the actual hardware interface address through which the
device can be accessed in an ad-hoc network. For example, in a Bluetooth Network, this would refer
to the 48-bit Bluetooth Address.

e Accessory Information: Accessory information include a time-to-live field that is used to convey infor-
mation about how long the platform is going to be in the vicinity, resources of the local platform (e.g.
cache size) or some important policy information (e.g. I don’t forward any advertisements or requests)
that might help the receiver node to decide whether to forward any requests/advertisements to this
node later on.

The platform Advertisement structure is used as a heartbeat message to notify the members of an alliance
about the presence of a certain platform in its vicinity. Clearly, it is not required for a platform to advertise
all its services (and hence send a large volume of data) every subsequent time interval in the event that
the platform is relatively stable in the environment. It only needs to send the whole information (using
Service Advertisement) when a new platform (device) is in the vicinity. For the rest of the time, it suffices
to send only the information about the presence of the platform in the vicinity of the other platforms.
The Cache Managers in the other platforms can update the cache information accordingly. The Platform
Advertisement structure contains only the platform identifier and the network address of the sender platform.
Thus is imposes a lot less overhead on the network in terms of message size.

3.3 Request Routing

The main goal of our system is to make a best-effort service discovery amongst agent platforms in an ad-
hoc environment. Each platform or node in the system has a local Directory Facilitator and an Agent
Management System [11]. When there is a request from any agent to communicate with or discover an
agent-service, the request first comes to the local Directory Facilitator (DF). If the DF does not have the
service, the DF forwards the request to the Cache Manager. If the service description is found in the local
cache, the information about the location of the agent (platform identifier, network address) is taken as hint
and provided to the requesting agent. The requesting agent contacts the agent-service using standard Agent
Communication Language [10]. The Cache Manager forwards the request to the Forwarding Manager in
case of two events:

1. If the hint provided by the local Cache Manager turns out to be false. This happens when the agent
fails to communicate with the device that has the service

2. A match is not found in the local Cache Manager

The Forwarding Manager forwards the request to selected agent platforms in its vicinity. Some of those
platforms may be a member of its own alliance. It also sets a hop-count field for the request to limit the
number of hops or number of adjacent alliances through which the request is going to traverse. The value
of the hop-count field is decided by the local Policy Manager. The standard Policy that is used by the
Policy Manager is to increment the hop-count from 1 to MAX-HOP-COUNT (maximum number of hops
the request might be allowed to traverse) before it discovers the required service. There are two different
ways of sending the request to neighboring platforms in the vicinity:

1. Broadcasting;:
The request could be broadcasted to all the neighboring devices. In this case, the request will reach
all the nodes in the vicinity. Some of these nodes might not be resource-rich enough to even forward
the request any further or some of them might not be members of any other alliance (since there are
no other nodes in that node’s vicinity).

2. Multicasting:

The request could be multicasted to a set of particular neighbors. The Policy Manager would specify
the method (broadcasting or multicasting). The multicasting could be used to prevent broadcast
storms. The device could multicast the request to its most active neighbors. It could identify its most
active neighbors by looking into its cache and evaluating advertisement patterns. The “Accessory
Information” sent with each advertisement to the Cache Manager is used to relatively evaluate the
nodes/platforms in the vicinity where there will be maximum chances of discovering a particular
service. For example, the “Accessory Information” could contain the cache size of the sender node.
This would provide a measure of the resource-rich ness of that node. It could also contain an idea of
how many platforms/nodes are there in the vicinity of the sender node. In the event, that the sender
node is a member of another large alliance of powerful nodes, it might be advantageous to send a
“Request for Service” to that node since it will in turn broadcast/multicast it to all other nodes in its
vicinity. The Forwarding Manager computes a list of nearby platforms where it could multicast the
“Request for Service” using such information from the Cache Manager. It then forwards the request
after decrementing the hop-count field by one. The strength of our design lies in the fact that all these
decisions would be strategically influenced by the local Policy Manager. Since the Policy Manager
takes user preferences and local resources into consideration, the solution could be adapted based on
user’s needs or concerns.

Each device upon receiving a request message can chose to drop the message or process it. The local
policy is used to make this decision. If the device chooses to process the request message, it checks its
DF to see if it is hosting the desired service. If the service is local then the service description is sent to
the requesting node. If the device is not hosting the needed service, it could check the local cache. If the
cache contains info about the service then the device replies with hint. Otherwise, the request if sent to
the Forwarding Manager. The Forwarding Manager decides to forward the request to other nodes in its
vicinity depending on the local policy. Figure 4 shows the control flow between the different components
in processing the request. In the event that a service was discovered, the reply is reverse-routed back to
the source node. Thus the reply follows the same path that the request had followed, but in the opposite
direction. The intermediate nodes may or may not choose to record this as a successful discovery to maintain
hit-rate statistics or utility measure of itself. This utility measure could be sent to remote platforms with
advertisements to give the other nodes an idea of its efficiency.

10

| Node 1 | : Node 2 i
5 «—' i Policy :
| Agent ! ' | Manager Drop Request |
i Request : E 4 :
E Yes i E Yes E
' In DF 1 i E
; No i i i
; ves | | |
: In Cach = 5 | !
E No i R t E A AR A i
i : 1 " Forwarding l
| Policy |, Forwarding——> P’ Manager i
'| Manager Manager | | _ * .] i
b ' Request | l

Figure 4: Control Flow for a Request

4 Implementation

To substantiate our design we have come up with a preliminary implementation of our scheme. The platform
used to demonstrate our scheme is a JADE [1] based Lightweight and Extensible Agent Platform called LEAP
[2]. LEAP is realized on mobile devices by implementing a new kernel for JADE. It is a FIPA compliant
open source system that revolves around the idea of making the platform Lightweight and Extensible, as
opposed to JADE’s focus on environmental functions like ontologies, monitoring facilities etc.

We use a set of Laptops and Windows CE iPaqgs as a test set of devices on which our architecture
is implemented. Every device (laptops and iPags) has a Main Container that has a Directory Facilitator
(DF) and an Agent Management Service (AMS) running. In our system, the functionality of the Main
Container has been extended to incorporate a peer-to-peer caching mechanism for the discovery of non-local
services in an ad hoc network. The new components in the system include a Cache Manager component, an
Advertisement Manager component, and a Service Discovery component.

4.1 Advertisement Manager

This component takes care of periodically advertising its local services to all of its one-hop neighbors in
the Bluetooth network. Current Implementation considers the Alliance Diameter as 1. Each Advertisement
packet has a unique Advertisement Identifier, a Directory Facilitator Agent Description, the device Cache
Size and the Advertisement’s Time to Live. We use Multiplicative Increase and Linear Decrease (MILD)
Algorithm to determine the time interval between successive advertisements. The rate of incoming adver-
tisements will determine the value of this time interval. To send periodic advertisements each mobile device
does an HCI inquiry [9] and opens a RECOMM connection [8] with all the devices found during inquiry. It
then closes the connection after sending the advertisement messages.

All incoming Advertisements are cached based on the caching policy of the Platform. In our case, the re-
sourcefulness (measured as a function of memory, processor speed etc.) of the device is taken into account
to determine the caching policy.

11

4.2 Cache Manager

The Cache Manager maintains a Cache entry for services that are present one hop away. The number of
entrees in the Cache Manager determines the Alliance formed by a node. When an Agent searches for a
service, it first looks up the DF table. If no such service is available in the DF, then the Cache is looked
up to check for services available in the node’s own alliance. If there is no such entry in the cache, then a
Bluetooth Service Discovery is initiated to look for services in other nodes that might not have been cached.
When a service is discovered, the DF Agent Description of the service is sent to the agent that is performing
the lookup. Further communication can be established using the Agent Identifier of the service provider.

4.3 Service Discovery Component

We have used the Bluetooth Service Discovery Protocol to discover services present in remote DFs. Every DF
in the device registers its local services to the local Bluetooth Service Discovery Manager. When a matching
service is not found in the local DF or Cache, the Bluetooth Service Discovery Manager first discovers the
devices that are in the vicinity of the source and then initiates a request to discover the service in the remote
Bluetooth Service Discovery Manager. The remote device may or may not be a member of the Alliance of
the requester node. We are using the Axis OpenBT stack for Bluetooth communication. The laptops use
Ericsson Bluetooth Development Kit as hardware components and the iPags use the embedded Bluetooth
in them.

We have developed a Bluetooth Service Discovery Manager that takes request from the DF service on
the Leap platform and performs a bluetooth service discovery. The request is passed in the form on an agent
description which consists of the agent-id, service-type and the attributes of the services. Since Bluetooth
discovery is done through UUIDs we perform a mapping of these agent service types into UUIDs. We assume
that the UUID mapping is same on all the Bluetooth devices running agents. Currently, the policies in each
device is primarily based on the resource availability of that device. We use the cache size as a parameter
to judge the resource availability of a device.

5 Discussion

Our design presents a policy-based alliance formation between agents in ad-hoc networks. Peer-to-Peer
caching of services with controlled advertisements is used for realizing such an architecture. This gives rise
to completely decentralized alliances, that are aware of resource-limitations of devices and are adaptive to
the mobility patterns in ad-hoc networks.

The policy-driven approach gives users the flexibility to configure the agent platform based on their needs.
Moreover, it makes the agent platform adaptable to the differing resource availability on different devices.
FIPA mandates that lifecycle of agents should be managed by the agent platform. Our design takes this
notion a step further in as much as an agent platform is now governed by the dynamics of the environment
it is hosted in and specific preferences of the user.

To illustrate the flexibility of our design, let us consider the following scenario.

An ad-hoc network of nodes in which one node is resource-rich(laptop type) and the others are resource-
poor(cell phone type). The policy manager on the laptop might have the policy of storing unlimited service
advertisements in the cache. The cell phones might have the policy of not storing any service advertisements.
In such a case, all the cell phones would effectively use the cache information of the laptop to discover agents
and services. This kind of a network model represents the “structured compound formation” referred to in

12

the FIPA Call For Technology [5]. An obvious problem with this approach is that if the laptop moves out of
the network, all the cell phones would effectively resort to peer-to-peer discoveries. In the case of extremely
dynamic environments, this might lead to thrashing. In our design, this notion of a structured compound
formation is implicit. Explicit service registrations are replaced by implicit caching of service information.
This avoids the overhead involved in election of the central node hosting the DF and AMS services. The
laptop has complete information about the alliance formed with it’s neighbors. The cell phones, though
being a part of the alliance are not aware of it, but based on the policy they can infer that laptop is the
only device which is caching service information (enabled by way of accessory information3.2.3 passed with
service advertisements).

Moreover, this notion of peer-to-peer caching, makes the network more resilient to node movements and
reduces the overhead of service discovery in such dynamic environments. Each device in the network, tries to
maintain a cache of services based on the policy specification. In such a case, even if the resource-rich node
moves out of the network, the other devices need not undergo a complete reconfiguration to peer-to-peer
mode. They utilize the cache information available with other nodes for efficient service discovery. For
example, in the previous model, if we had a few PDA type devices where caching was enabled, then the
network nodes would be able to utilize this cache information, in case the laptop moved out.

When these nodes are stable in the network, the variable frequency advertising would decrease the net-
work traffic and the caches would represent consistent information. In the case of these nodes being dynamic,
caches would become stale soon. The commitment period of service descriptions, graceful exit from the net-
work and/or request misses would help maintain consistent caches.

6 Conformance to FIPA

Our design conforms to the FIPA specification completely. Since we have mandated that an agent platform
is always present on the device, directory services, white-page services and lifecycle management are all done
by the platform for local agents.

References

[1] F. Belligemine and G. Rimassa. Jade-a fipa-compliant agent framework. In Proc. PAAM ’99. London,
pages 97-108, 1999.

. Bergenti an . Poggi. Leap: pa platiorm for handheld and mobile devices. In presented at
2] F. B i and A. Poggi. L Afi latf for handheld and bile devi I d
ATAL, 2001.

[3] Connected Limited Device Configuration. http://java.sun.com/products/cldc/.
[4] PersonalJava Application Environment. http://java.sun.com/products/personaljava/.

[5] FIPA Call for Technology for Compound Formation in Ad hoc Environments. http://www.fipa.org/
docs/wps/f-wp-00020/f-wp-00020.html.

[6] Micro Edition Java 2 Platform. http://java.sun.com/j2me/.

[7] Mobile Information Device Profile (MIDP). http://java.sun.com/products/midp/.

13

[8] Bluetooth White Paper. World Wide Web, http://www.bluetooth.com/developer/whitepaper.

[9] Bluetooth Specification. World Wide Web, http://www.bluetooth.com/developer/specification/
Bluetooth_11_SpecificaltioBook.pdf.

[10] FIPA ACL Message Structure Specification. World Wide Web, http://www.fipa.org/specs/
£ipa00061/.

[11] FIPA Agent Management Specification. http://www.fipa.org/specs/fipa00023.

14

