
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Agent Message Transport Envelope 5

Representation in Bit-Efficient Encoding 6

Specification 7

 8

Document title FIPA AMT Envelope Representation in Bit-Efficient Encoding Specification
Document number XC00088C Document source FIPA Agent Management
Document status Experimental Date of this status 2002/10/18
Supersedes None
Contact fab@fipa.org
Change history
2001/08/10 Approved for Experimental; Line numbering added
2002/05/22 See Informative Annex A — ChangeLog

 9

 10

 11

 12

 13

 14

 15

 16

© 1996-2002 Foundation for Intelligent Physical Agents 17
http://www.fipa.org/ 18
Geneva, Switzerland 19

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual
property rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages
anyone implementing any part of this specification to determine first whether part(s) sought to be implemented are
covered by the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the
holder(s) of such intellectual property prior to implementation. This specification is subject to change without notice.
Neither FIPA nor any of its Members accept any responsibility whatsoever for damages or liability, direct or
consequential, which may result from the use of this specification.

 ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies 22
and universities that are active in the field of agents. FIPA makes the results of its activities available to all interested 23
parties and intends to contribute its results to the appropriate formal standards bodies where appropriate. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound 27
to implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the 31
process of specification may be found in the FIPA Document Policy [f-out-00000] and the FIPA Specifications Policy [f-32
out-00003]. A complete overview of the FIPA specifications and their current status may be found on the FIPA Web 33
site. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of June 2002, the 56 members of FIPA 36
represented many countries worldwide. Further information about FIPA as an organization, membership information, 37
FIPA specifications and upcoming meetings may be found on the FIPA Web site at http://www.fipa.org/. 38

 iii

Contents 39

1 Scope ..1 40
2 Bit-Efficient Envelope Representation...2 41

2.1 Component Name ..2 42
2.2 ACC Processing of Bit-Efficient Envelope ...2 43
2.3 Concrete Message Envelope Syntax...3 44
2.4 Notes on the Grammar Rules ..5 45

3 Examples...7 46
4 References ..11 47
5 Informative Annex A — ChangeLog..12 48

5.1 2002/05/22 – version C ..12 49
50

1 Scope 50

This document is part of the FIPA specifications and deals with message transportation between inter-operating 51
agents. This document also forms part of the FIPA Agent Management Specification [FIPA00023] and contains 52
specifications for: 53
 54
• Syntactic representation of a message envelope in bit-efficient form. 55
 56
Informative examples of the bit-efficient envelope syntax are given in Section 3, Examples. 57

 58

59

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 2

2 Bit-Efficient Envelope Representation 59

This section gives the concrete syntax for the message envelope specification that must be used to transport 60
messages over a Message Transport Protocol (MTP - see [FIPA00067]). This concrete syntax is designed to 61
complement [FIPA00069]. 62
 63
The message envelope transport syntax is expressed in standard EBNF format (see Table 1). 64
 65

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("
Non-terminals are written as capitalised identifiers Expression
Square brackets denote an optional construct ["," OptionalArg]
Vertical bars denote an alternative between choices Integer | Float
Asterisk denotes zero or more repetitions of the preceding expression Digit*
Plus denotes one or more repetitions of the preceding expression Alpha+
Parentheses are used to group expansions (A | B)*
Productions are written with the non-terminal name on the left-hand
side, expansion on the right-hand side and terminated by a full stop

ANonTerminal = "terminal".

0x?? is a hexadecimal byte 0x00

 66
Table 1: EBNF Rules 67

 68
N.B. White space is not allowed between tokens. 69
 70

2.1 Component Name 71

The name assigned to this component is: 72
 73
fipa.mts.env.rep.bitefficient.std 74
 75

2.2 ACC Processing of Bit-Efficient Envelope 76

According to [FIPA00067], a FIPA compliant ACC is not allowed to modify any element of the envelope that it receives. 77
It is however allowed to update a value in any of the envelope’s slots by adding a new ExtEnvelope element at the 78
beginning of the messageEnvelopes sequence. This new element is required to have only those slot values that the 79
ACC wishes to add or update plus a new ReceivedObject element1. 80
 81
The following pseudo code algorithm may be used to obtain the latest values for each of the envelope’s slots. 82
 83
EnvelopeWithAllSlots := new empty Envelope 84
while (not all envelopes processed) { 85
 tempEnvelope = getNextEnvelope; 86
 foreach slot in an envelope { 87

 if ((this slot has no value in EnvelopeWithAllSlots) 88
 AND (this slot has a value in tempEnvelope)) 89
 then copy the value of this slot to EnvelopeWithAllSlots 90
 } 91
} 92
 93
EnvelopeWithAllSlots now contains the latest values for all the slots set in the envelope. 94

95

1 The new ReceivedObject is forced, syntactically, to be in all envelopes of the messageEnvelopes sequence except the first one.

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 3

2.3 Concrete Message Envelope Syntax 95

 96
MessageEnvelope = (ExtEnvelope)* BaseEnvelope Payload. 97
 98
BaseEnvelope = BaseEnvelopeHeader (Slot)* EndOfEnvelope. 99
 100
ExtEnvelope = ExtEnvelopeHeader (Slot)* EndOfEnvelope. 101
 102
BaseEnvelopeHeader = BaseMsgId EnvLen ACLRepresentation Date. 103
 104
ExtEnvelopeHeader = ExtMsgId EnvLen ReceivedObject. 105
 106
EnvLen = Len16 107
 | JumboEnvelope. /* See comment 1 (Section 2.4) */ 108
 109
JumboEnvelope = EmptyLen16 Len32. 110
 111
BaseMsgId = 0xFE. 112
 113
ExtMsgId = 0xFD. 114
 115
EndOfEnvelope = EndOfCollection. 116
 117
Payload = /* See comment 2 (Section 2.4) */ 118
 119
Slot = PredefinedSlot 120
 | UserDefinedSlot. /* See comment 5 (Section 2.4) */ 121
 122
PredefinedSlot = 0x02 AgentIdentifierSequence /* to */ 123

| 0x03 AgentIdentifier /* from */ 124
| 0x04 ACLRepresentation /* acl-representation */ 125
| 0x05 Comments /* comments */ 126

 | 0x06 PayloadLength /* payload-length */ 127
 | 0x07 PayloadEncoding /* payload-encoding */ 128
 | 0x09 IntendedReceiver /* intended-receiver */ 129
 | 0x0a ReceivedObject /* received */ 130
 | 0x0b TransportBehaviour. /* transport-behaviour */ 131
 132
ACLRepresentation = UserDefinedACLRepresentation 133
 | 0x10 /* fipa.acl.rep.bitefficient.std [FIPA00069]*/ 134
 | 0x11 /* fipa.acl.rep.string.std [FIPA00070] */ 135
 | 0x12. /* fipa.acl.rep.xml.std [FIPA00071] */ 136
 137
Date = BinDateTimeToken. 138
 139
Comments = NullTerminatedString. 140
 141
PayloadLength = BinNumber. 142
 143
PayloadEncoding = NullTerminatedString. 144
 145
IntendedReceiver = AgentIdentifierSequence. 146
 147
TransportBehaviour = Any. 148
 149
UserDefinedACLRepresentation 150
 = 0x00 NullTerminatedString. 151
 152
ReceivedObject = By 153

 Date 154
 [From] 155

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 4

 [Id] 156
 [Via] 157
 (UserDefinedParameter)* 158
 EndOfCollection. 159

 160
By = URL. 161
 162
From = 0x02 URL. 163
 164
Id = 0x03 NullTerminatedString. 165
 166
Via = 0x04 NullTerminatedString. 167
 168
BinNumber = Digits. /* See comment 4 (Section 2.4) */ 169
 170
Digits = CodedNumber+. 171
 172
NullTerminatedString = String 0x00. 173
 174
UserDefinedSlot = 0x00 Keyword NullTerminatedString. 175
 176
KeyWord = NullTerminatedString. 177
 178
Any = 0x14 NullTerminatedString 179
 | ByteLenEncoded. 180
 181
ByteLenEncoded = 0x16 Len8 ByteSequence 182
 | 0x17 Len16 ByteSequence 183
 | 0x19 Len32 ByteSequence. 184
 185
ByteSequence = Byte*. 186
 187
AgentIdentifierSequence = (AgentIdentifier)* EndOfCollection. 188
 189
AgentIdentifier = 0x02 AgentName 190
 [Addresses] 191
 [Resolvers] 192
 (UserDefinedParameter)* 193
 EndOfCollection. 194
 195
AgentName = NullTerminatedString. 196
 197
Addresses = 0x02 UrlSequence. 198
 199
Resolvers = 0x03 AgentIdentifierSequence. 200
 201
UserDefinedParameter = 0x05 NullTerminatedString Any. 202
 203
UrlSequence = (URL)* EndOfCollection. 204
 205
URL = NullTerminatedString. 206
 207
StringSequence = (NullTerminatedString)* EndOfCollection. 208
 209
BinDateTimeToken = 0x20 BinDate /* Absolute time */ 210
 | 0x21 BinDate /* Relative time (+) */ 211
 | 0x22 BinDate /* Relative time (-) */ 212
 | 0x24 BinDate TypeDesignator /* Absolute time */ 213
 | 0x25 BinDate TypeDesignator. /* Relative time (+) */ 214
 | 0x26 BinDate TypeDesignator. /* Relative time (-) */ 215
 216
BinDate = Year Month Day Hour Minute Second Millisecond. 217
 /* See comment 3 (Section 2.4) */ 218

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 5

EndOfCollection = 0x01. 219
 220
EmptyLen16 = 0x00 0x00. 221
 222
Len8 = Byte. /* See comment 6 (Section 2.4) */ 223
 224
Len16 = Short. /* See comment 6 (Section 2.4) */ 225
 226
Len32 = Long. /* See comment 6 (Section 2.4) */ 227
 228
Year = Byte Byte. 229
 230
Month = Byte. 231
 232
Day = Byte. 233
 234
Hour = Byte. 235
 236
Minute = Byte. 237
 238
Second = Byte. 239
 240
Millisecond = Byte Byte. 241
 242
String = /* As in [FIPA00070] */ 243
 244
CodedNumber = /* See comment 4 (Section 2.4) */ 245
 246
TypeDesignator = /* As in [FIPA00070] */ 247
 248

2.4 Notes on the Grammar Rules 249

1. Normally, the length of an envelope does not exceed 65536 bytes (2^16). Therefore, only two bytes are reserved 250
for envelope length (len16). However, the syntax also allows envelopes with greater lengths. In this case, the 251
sender sets the reserved envelope length slot (two bytes) to length zero, and the following four bytes are used to 252
represent the real length (maximum envelope length is therefore 2^32 bytes). 253

 254
The length of the envelope comprises all the parts of the envelope, including the message identifier and the length 255
slot itself. The length of the envelope is expressed in the network byte order. 256

 257
2. The payload (ACL message) starts at the first byte after the BaseEnvelope. White space is allowed between the 258

envelope and the ACL message only if the syntax of ACL allows this. For instance, fipa.acl.rep.string.std 259
allows white space, but fipa.acl.rep.bitefficient.std does not. 260

 261
3. Dates are coded as numbers, that is, four bits are reserved for each ASCII number (see comment 4 below). 262

Information as to whether the type designator is present or not is coded into an identifier byte. These slots always 263
have static length (two bytes for year and milliseconds, one byte for other components). 264

 265
4. Numbers are coded by reserving four bits for each digit in the number’s ASCII representation, that is, two ASCII 266

numbers are coded into one byte. Table 2 shows a 4-bit code for each number and special codes that may appear 267
in ASCII coded numbers. 268

 269
If the ASCII presentation of a number contains an odd number of characters, the last four bits of the coded number 270
are set to zero (the Padding token), otherwise an additional 0x00 byte is added to the end of the coded number. 271
If the number to be coded is either an integer, decimal number, or octal number, the identifier byte 0x12 is used. 272
For hexadecimal numbers, the identifier byte 0x13 is used. Hexadecimal numbers are converted to integers 273
before coding (the coding scheme does not allow characters from a through f to appear in number form). 274

 275

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 6

Token Code Token Code
Padding 0000 7 1000
0 0001 8 1001
1 0010 9 1010
2 0011 + 1100
3 0100 E 1101
4 0101 - 1110
5 0110 . 1111
6 0111

 276

Table 2: Binary Representation of Number Tokens 277
 278
5. All envelope parameters defined in [FIPA00067] have a predefined code. If an envelope contains a user-defined 279

parameter, an extension mechanism is used (byte 0x00). The names of the user-defined envelope parameters 280
should have the prefix “X-CompanyName-”. 281

 282
6. Byte is a one-byte code word, Short is a short integer (two bytes, network byte order) and Long is a long integer 283

(four bytes, network byte order). 284

285

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 7

3 Examples 285

 286
1. Here is a simple example of an envelope encoded using XML representation: 287
 288
<?xml version="1.0"?> 289
<envelope> 290
 <params index="1"> 291
 <to> 292
 <agent-identifier> 293
 <name>receiver@foo.com</name> 294
 <addresses> 295
 <url>http://foo.com/acc</url> 296
 </addresses> 297
 </agent-identifier> 298
 </to> 299
 <from> 300
 <agent-identifier> 301
 <name>sender@bar.com</name> 302
 <addresses> 303
 <url>http://bar.com/acc</url> 304
 </addresses> 305
 </agent-identifier> 306
 </from> 307
 308
 <acl-representation>fipa.acl.rep.xml.std</acl-representation> 309
 310
 <date>20000508T042651481</date> 311
 312
 <received> 313
 <received-by value="http://foo.com/acc" /> 314
 <received-date value="20000508T042651481" /> 315
 <received-id value="123456789" /> 316
 </received> 317
 </params> 318
</envelope> 319
 320
Using the bit-efficient representation, the envelope becomes: 321
 322
0xfe 0x00 0x88 0x12 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 0x03 0x02 323
‘r’ ‘e’ ‘c’ ‘e’ ‘i’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 324
0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ 325
‘c’ ‘c’ 0x00 0x01 0x01 0x02 ‘s’ ‘e’ ‘n’ ‘d’ ‘e’ ‘r’ ‘@’ ‘b’ ‘a’ ‘r’ ‘.’ 326
‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ 327
‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x01 0x01 0x0a ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ 328
‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x20 0x31 0x11 0x06 0x19 329
0x15 0x37 0x62 0x59 0x20 0x03 ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 0x00 0x01 330
 331
The length of the original message is about 584 bytes and the encoded result is 136 bytes giving a compression ratio 332
of about 4:1. 333

334

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 8

2. Here is an example that covers all aspects of an envelope. 334
 335
<?xml version="1.0"?> 336
<envelope> 337
 <params index="1"> 338
 <to> 339
 <agent-identifier> 340
 <name>receiver@foo.com</name> 341
 <addresses> 342
 <url>http://foo.com/acc</url> 343
 </addresses> 344
 <resolvers> 345
 <agent-identifier> 346
 <name>resolver@bar.com</name> 347
 <addresses> 348
 <url>http://bar.com/acc1</url> 349
 <url>http://bar.com/acc2</url> 350
 <url>http://bar.com/acc3</url> 351
 </addresses> 352
 </agent-identifier> 353
 </resolvers> 354
 </agent-identifier> 355
 </to> 356
 357
 <from> 358
 <agent-identifier> 359
 <name>sender@bar.com</name> 360
 <addresses> 361
 <url>http://bar.com/acc</url> 362
 </addresses> 363
 <resolvers> 364
 <agent-identifier> 365
 <name>resolver@foobar.com</name> 366
 <addresses> 367
 <url>http://foobar.com/acc1</url> 368
 <url>http://foobar.com/acc2</url> 369
 <url>http://foobar.com/acc3</url> 370
 </addresses> 371
 </agent-identifier> 372
 </resolvers> 373
 </agent-identifier> 374
 </from> 375
 376
 <comments>No comments!</comments> 377
 378
 <acl-representation>fipa.acl.rep.xml.std</acl-representation> 379
 380
 <payload-encoding>US-ASCII</payload-encoding> 381
 382
 <date>20000508T042651481</date> 383
 384
 <intended-receiver> 385
 <agent-identifier> 386
 <name>intendedreceiver@foobar.com</name> 387
 <addresses> 388
 <url>http://foobar.com/acc1</url> 389
 <url>http://foobar.com/acc2</url> 390
 <url>http://foobar.com/acc3</url> 391
 </addresses> 392
 <resolvers> 393
 <agent-identifier> 394
 <name>resolver@foobar.com</name> 395
 <addresses> 396
 <url>http://foobar.com/acc1</url> 397
 <url>http://foobar.com/acc2</url> 398
 <url>http://foobar.com/acc3</url> 399
 </addresses> 400

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 9

 <resolvers> 401
 <agent-identifier> 402
 <name>resolver@foobar.com</name> 403
 <addresses> 404
 <url>http://foobar.com/acc1</url> 405
 <url>http://foobar.com/acc2</url> 406
 <url>http://foobar.com/acc3</url> 407
 </addresses> 408
 </agent-identifier> 409
 </resolvers> 410
 </agent-identifier> 411
 </resolvers> 412
 </agent-identifier> 413
 </intended-receiver> 414
 415
 <received> 416
 <received-by value="http://foo.com/acc" /> 417
 <received-from value="http://foobar.com/acc" /> 418
 <received-date value="20000508T042651481" /> 419
 <received-id value="123456789" /> 420
 <received-via value="http://bar.com/acc" /> 421
 </received> 422
 423
 </params> 424
 425
</envelope> 426
 427
Using the bit-efficient representation, the envelope becomes: 428
 429
0xfe 0x01 0xdb 0x12 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 0x02 ‘r’ 430
‘e’ ‘c’ ‘e’ ‘i’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 431
‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ 432
‘c’ 0x00 0x01 0x03 0x02 ‘s’ ‘e’ ‘n’ ‘d’ ‘e’ ‘r’ ‘@’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ 433
‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ 434
‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 0x00 0x01 0x07 ‘U’ ‘S’ ‘-’ ‘A’ ‘S’ ‘C’ ‘I’ ‘I’ 0x00 435
0x01 0x09 0x02 ‘i’ ‘n’ ‘t’ ‘e’ ‘n’ ‘d’ ‘e’ ‘d’ ‘r’ ‘e’ ‘c’ ‘e’ ‘i’ ‘v’ 436
‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ 437
‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ 438
‘c’ ‘c’ ‘1’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ 439
‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ 440
‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 441
0x03 0x02 ‘r’ ‘e’ ‘s’ ‘o’ ‘l’ ‘v’ ‘e’ ‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ 442
‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ 443
‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘1’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ 444
‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 445
0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ 446
‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 0x03 0x02 ‘r’ ‘e’ ‘s’ ‘o’ ‘l’ ‘v’ ‘e’ 447
‘r’ ‘@’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ 0x00 0x02 ‘h’ ‘t’ ‘t’ 448
‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ 449
‘c’ ‘1’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ 450
‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘2’ 0x00 ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ 451
‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ ‘3’ 0x00 0x01 0x01 452
0x0a ‘h’ ‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ 453
‘c’ ‘c’ 0x00 0x20 0x31 0x11 0x06 0x19 0x15 0x37 0x62 0x59 0x20 0x02 ‘h’ ‘t’ ‘t’ 454
‘p’ ‘:’ ‘/’ ‘/’ ‘f’ ‘o’ ‘o’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ 455
‘c’ 0x00 0x03 ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 0x00 0x01 0x01 0x04 ‘h’ 456
‘t’ ‘t’ ‘p’ ‘:’ ‘/’ ‘/’ ‘b’ ‘a’ ‘r’ ‘.’ ‘c’ ‘o’ ‘m’ ‘/’ ‘a’ ‘c’ ‘c’ 457
0x00 0x01 458
 459
The length of the original message is about 2360 bytes and the encoded result is 475 bytes giving a compression ratio 460
of about 5:1. 461

462

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 10

4 References 462

[FIPA00067] FIPA Agent Message Transport Service Specification. Foundation for Intelligent Physical Agents, 463
2000. http://www.fipa.org/specs/fipa00067/ 464

[FIPA00069] FIPA ACL Message Representation in Bit-Efficient Encoding Specification. Foundation for Intelligent 465
Physical Agents, 2000. 466

 http://www.fipa.org/specs/fipa00069/ 467
[FIPA00070] FIPA ACL Message Representation in String Specification. Foundation for Intelligent Physical Agents, 468

2000. 469
http://www.fipa.org/specs/fipa00070/ 470

[FIPA00071] FIPA ACL Message Representation in XML Specification. Foundation for Intelligent Physical Agents, 471
2000. 472
http://www.fipa.org/specs/fipa00071/ 473

474

© 2000 Foundation for Intelligent Physical Agents FIPA AMT Envelope Representation in Bit-Efficient Encoding

 11

5 Informative Annex A — ChangeLog 474

5.1 2002/05/22 – version C 475

Page 3, Line 128: Removed the “encrypted” field. 476
 477
Page 3, Line 146: Removed a production related the “encrypted” field. 478
 479
Page 4, Line 159: Added optional UserDefinedParameter to the ReceivedObject. 480
 481
Page 4, Line 203: Changed the identifier byte of the UserDefinedParameter from 0x04 to 0x05. 482
 483
Page 4, Lines 210-222: Added Sign to DateTimeToken. 484
 485
Examples: Removed the “encrypted” field and updated the bit-efficient versions accordingly. 486

